
Ex: In (a)-(c), the voltage $v_C(t)$ across a 0.2 μ F capacitor is listed. Find the current, $i_C(t)$, flowing in the capacitor in each case as a function of time:

- $v_C(t) = 3 \text{ V}$ a)
- b) $v_C(t) = 1000t \text{ V/s}$ c) $v_C(t) = 1 e^{-t/4 \text{ms}} \text{ V}$

SOL'N: We use the defining equation for a capacitor in each case:

$$i_C = C \frac{dv_C}{dt}$$

a)
$$i_C = C \frac{d}{dt} 3 \text{ V} = 0 \text{ A}$$

b)
$$i_C = C \frac{d}{dt} 1000t \text{ V/s} = 0.2 \text{ } \mu\text{F} \cdot 1000 \text{ V/s} = 200 \text{ } \mu\text{A or } 0.2 \text{ mA}$$

c)
$$i_C = C \frac{d}{dt} (1 - e^{-t/4 \text{ms}}) \text{ V} = 0.2 \text{ } \mu\text{F} \cdot \left(-\frac{-1}{4 \text{ms}} e^{-t/4 \text{ms}} \right) = 50 \text{ } \mu\text{A} \text{ } e^{-t/4 \text{ms}}$$