Ex: \quad The following equation describes the voltage, v_{L}, across an inductor as a function of time. Find an expression for the current, $i_{\mathrm{L}}(t)$, through the inductor as a function of time. Assume that $i_{\mathrm{L}}(t=0)=0 \mathrm{~A}$.

$$
v_{L}(t)=2+6\left(1-e^{-t / 12.5 \mu \mathrm{~s}}\right) \mathrm{kV}
$$

Sol'n: We use the defining equation for an inductor and solve for i in terms of v.

$$
v_{L}=L \frac{d i_{L}}{d t}
$$

First, we multiply both sides by $d t$.

$$
v_{L} d t=L d i_{L}
$$

Second, we integrate both sides and use limits that correspond to the variable of integration for each side and are evaluated at the same points in time for both sides.

$$
\int_{0}^{t} v_{L} d t=\int_{i_{L}(t=0)}^{i_{L}(t)} L d i_{L}
$$

The integral on the right side simplifies nicely.

$$
\int_{0}^{t} v_{L} d t=\left.L i_{L}\right|_{i_{L}(t=0)} ^{i_{L}(t)}=L\left[i_{L}(t)-i_{L}(t=0)\right]
$$

or

$$
i_{L}(t)=\frac{1}{L} \int_{0}^{t} v_{L} d t+i_{L}(t=0)
$$

The above expression applies to any inductor in any circuit.
We now substitute the formula given for $v_{\mathrm{L}}(t)$ and the value given for $i_{\mathrm{L}}(t=0)$ to find $i_{\mathrm{L}}(t):$

$$
i_{L}(t)=\frac{1}{L} \int_{0}^{t}\left[2+6\left(1-e^{-t / 12.5 \mu \mathrm{~s}}\right) \mathrm{kV}\right] d t+0 A
$$

or

$$
\left.i_{L}(t)=\frac{1}{L} \int_{0}^{t}\left[8-6 e^{-t / 12.5 \mu \mathrm{~s}}\right) \mathrm{kV}\right] d t+0 A
$$

$$
i_{L}(t)=\frac{1}{L}\left[\left.8 t\right|_{0} ^{t}+\left.6 \cdot 12.5 \mu \mathrm{~s} \cdot e^{-t / 12.5 \mu \mathrm{~s}}\right|_{0} ^{t}\right]_{\mathrm{kV}}
$$

or

$$
i_{L}(t)=\frac{1}{L}\left[8 t+75 \mu \mathrm{~s} \cdot\left(e^{-t / 12.5 \mu \mathrm{~s}}-1\right)\right] \mathrm{kV}
$$

or

$$
i_{L}(t)=\frac{1}{L}\left[8 \mathrm{kV} \cdot t+75 \mathrm{mV} \cdot\left(e^{-t / 12.5 \mu \mathrm{~s}}-1\right)\right]
$$

Using $L=10 \mathrm{mH}$ we find the final numerical answer.

$$
i_{L}(t)=\frac{1}{10 \mathrm{mH}}\left[8 \mathrm{kV} \cdot t+75 \mathrm{mV} \cdot\left(e^{-t / 12.5 \mu \mathrm{~s}}-1\right)\right]
$$

or

$$
i_{L}(t)=0.8 \mathrm{MA} \cdot t+7.5 \mathrm{~A} \cdot\left(e^{-t / 12.5 \mu \mathrm{~s}}-1\right)
$$

