Homework 8

U

1. Find the current, $i_{\rm L}$, through the inductor in the circuit below for t > 0 if $i_{\rm L}(t=0) = 100 \,\mu\text{A}$.

2.

Find the voltage, $v_{\rm C}$, across the capacitor in the circuit below for t > 0 if $v_{\rm C}(t=0) = 100 \,\mu \text{V}$.

3.

After being open for a long time, the switch closes at t = 0.

- a) Find an expression for $v_{\rm C}(t)$ for $t \ge 0$.
- b) Find the energy stored in the capacitor at time $t = 30 \,\mu s$.

- a) Find an expression for $i_{\rm L}(t)$ for $t \ge 0$.
- b) Find the energy stored in the inductor at time $t = 30 \ \mu s$.

5.

After being zero for a long time, the value of $i_g(t)$ changes to 15 mA at t = 0 (and remains at 15 mA as time increases to infinity).

- a) Find an expression for $v_0(t)$ for t > 0.
- b) Find the current, i_R , in *R* as a function of time.

Answers:

- 1. $i_L(t > 0) = 100 \,\mu \text{A} \, e^{-t/50 \,\text{ns}}$
- 2. Hint: $\tau = 450 \,\mathrm{ms}$
- 3.b. $w_C = 8.42 \, \text{nJ}$
- 4.a. $i_L(t \ge 0) = 0.23 \,\mathrm{mA} 0.23 \,\mathrm{mA} \cdot e^{-t/0.2 \,\mathrm{ps}}$
- 5.b. $i_R(t \ge 0) = 15 \text{ mA} 15 \text{ mA} \cdot e^{-t/1 \mu s}$