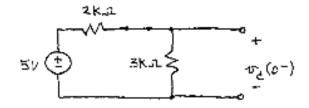

u

Ex:

After being closed for a long time, the switch opens at t = 0. Find $v_C(t)$ for t > 0. Hint: use a Thevenin equivalent for the voltage source and resistors for t < 0.

solin: The general solin for
$$v_c(t)$$
 is
$$-t/v$$

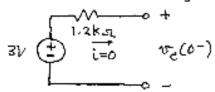

$$v_c(t) = v_c(t \rightarrow \infty) + \left[v_c(t = 0^+) - v_c(t \rightarrow \infty)\right] = 0$$

where $\tau = R_{\tau L} C$.

Note: R_{Th} is the Thevenin equivalent resistance seen looking into the terminals where C is attached.

To find $v_c(o^+)$, we consider $t=o^$ when the circuit has reached equilibrium. This means currents and voltages are not changing, $dv_c = 0$, and $i_c = C \frac{dv_c}{dt}|_{t=0}$. At since $i_c = 0$ at time t = 0, C acts like an open circuit at t = 0.

This yields the following circuit model at t=0":


Note that the switch is closed at t=0.

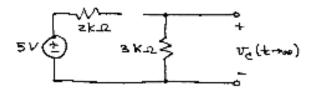
If we use a Thevenin equivalent for the circuit, we have a voltage divider formed by the 50, $2k\Omega$, and $3k\Omega$.

Thus, $V_{Th} = 5V \cdot 3k\Omega$, = 30. $2k\Omega + 3k\Omega$

To find R_{Th} , we turn off the 5V source and find that $2k\Omega[3k\Omega = 1.2k\Omega]$ is the resistance seen looking in from the terminals where we measure $v_{C}(0^{-})$.

t=0 model using Thevenin equivalent:

Since no current can flow in the circuit owing to the open circuit, the v-drop across the 1.2kS resistor is $c \cdot R = 0 v$.


It follows that $\sigma_{\mathcal{C}}(o^{-}) = v_{Th} = 3v$.

Since vo is an energy variable, it cannot change instantly. Thus,

To find $v_c(t\rightarrow \infty)$, we again employ the assumption that the circuit is in a state where currents and voltages are no longer changing. Thus, is = $\frac{c}{dt}$ =0.

In other words, C acts like an open direuit.

+>∞ model:

With the switch open, the 5V source and 2ks resistor disconnected from the C. Since there is power source in the part of the Circuit connected to the C, $V_C(t \rightarrow \infty) = 0V$. Note that this satisfies Kirchhoff's voltage law for the loop consisting of the 3ks resistor, (with zero current and a zero-volt drop), and the C.

For the time constant, we use the Thevenin equivalent seen looking into the terminals where the C is connected. (Note that we use the circuit for t>0.) Here, the Thevenin equivalent is just 3kx R.

$$t = R_{th}C = 3k\Omega \cdot 0.1\mu F$$

or $t = 0.3 \text{ ms}$ or $300 \mu F$
 $\therefore v_c(t) = 0v + [3v - 0v]e^{-t/300\mu F}$, $t \ge 0$

or $v_c(t) = 3ve^{-t/300\mu F}$, $t \ge 0$