Ex:

After being open for a long time, the switch closes at $t=0$. Find $v_{1}(t)$ for $t>0$.
solon: $t=0^{-}$model.; (to find $v_{c}\left(0^{-}\right)$) $c=o p e n$ circuit

The total current flowing cut of top node equals zero, and there is no current flowing in the $1 M \Omega$, the c, and the dependent source. It foilons that the current in the 2 Mas is CA . By Ohm's [ami, the voltage drop across the $2 M \rightarrow$ is $0.2 H i n=c \%$ This is also the voltage across Sh C.

$$
\left.\begin{array}{rl}
& \therefore v_{c}\left(0^{-}\right)
\end{array}\right)=O V
$$

We use finis value of $v_{c}\left(t=c^{+}\right)$as a voltage source in the $t=0^{\circ}$ model to find $v_{1}\left(0^{\prime}\right)$.

From a voltage loop on the left side, we have $v_{1}\left(0^{+}\right)=5 V$. Note: the components to the right of c are in parallel with the circuitry on the left and directly across the same voltage source, (namely av).
$t \rightarrow \infty$ model: (to find $\left.V_{1}(t, \infty)\right) \quad c=$ open cire

The dependent sri is off and effectively disappears. This leaves a voltage divider:

$$
v_{1}(t \rightarrow \infty)=5 V \cdot \frac{1 M \Omega}{1 M R+2 M L L}=\frac{5}{3} V
$$

Finally, we have $\tau=R_{T h} C$ where $R_{\text {Th }}$ is the Thevenin equivalent resistance seen looking into the terminals where d is connected.

Because there is a dependent source, we find $R_{T h}$ from $R_{T h}=\frac{1 / T_{\text {Th }}}{i_{s k}}$.
$V_{\text {Th }}$ as always, equal's the voltage a crops the output terminals when nothing is connected across them. Since $i_{x}=0$ and $9 i_{x}=0$, $\mathrm{V}_{\text {Th }}$ is given by a voltage divider formula:

If we short out the output terminals, we have od across the $2 M 2$ resistor. This, there is no current in the $2 M a R$.

A current summation for the top node reveals that the current in the $1 M \Omega$ must be 103_{x}. From a v-loop on the left side, we also have $s V$ across the $1 M, R$. Thus, the current in the $/ M \Omega$ R is $5 V / \operatorname{Min}=5 \mu A$. Thus, we have

$$
5 \mu A=10 i_{x} \quad \text { or } \quad i_{x}=0.5 \mu \mathrm{~A}
$$

From the schematic diagram, we see that

$$
\begin{aligned}
i_{5 c}=i_{x} & =0.5 \mu \mathrm{~A} . \\
\therefore \quad R_{T h}=\frac{V_{T h}}{i_{5 C}} & =\frac{\frac{10}{3} V}{0.5, \mu A}
\end{aligned}
$$

Thus, $\tau=f_{T n}{ }^{C}=\frac{20}{3} M \Omega \cdot 15 p F=100 \mu \mathrm{~s}$.
Using the general form of solution, we have

$$
\begin{aligned}
v_{1}(t) & =v_{1}(t \rightarrow \infty)+\left[v_{1}\left(t=0^{t}\right)-v_{1}(t \rightarrow \infty)\right] e^{-t / \tau} \\
v_{1}(t) & =\frac{5}{3} v+\left[5 v-\frac{5}{3} v\right] e^{-t / 100 \mu s}, \quad t>0 \\
\text { or } v_{1}(t) & =\frac{5}{3} v+\frac{10}{3} v e^{-t / 100 \mu s}, \quad t>0
\end{aligned}
$$

Note: A much simpler way to solve this problem is to observe A the Mix dependent source acts like a capacitor that is 9 times C. Since the C and 96 are in parallel, we have an equivalent capacitance of $10 C=10 \cdot 15 \mathrm{pF}=150 \mathrm{p} F$. The dependent source is now gone, and the sol'n is easier to find. The solution, of course is the same as above. $P_{T h} C$ is the same, but $R_{T h}=M_{1 / 2} \sqrt{2 M R}$ and Ca/Sopts $v_{1}\left(0^{+}\right)$and $v_{1}(t \rightarrow \infty)$ are the same as before.

