Ex:
a) Find $v(t)$ for $t \geq 0$ if $V(s)=\frac{1}{3} \cdot \frac{s+13.5}{s^{2}+18 s+90}$.
b) Find $\lim _{t \rightarrow 0^{+}} v(t)$ if $V(s)=\frac{5(s+0.8)(s+0.6)+4}{(s+2)\left[(s+0.6)^{2}+(0.8)^{2}\right]}$.

Sol'N: a) We first find the roots of the denominator.

$$
V(s)=\frac{1}{3} \cdot \frac{s+13.5}{s^{2}+18 s+90}=\frac{1}{3} \cdot \frac{s+13.5}{(s+9)^{2}+3^{2}}
$$

We have complex roots, meaning we must have a decaying cosine and/or sine. We can do partial fractions with coefficients for both the cosine and sine terms as follows and avoid complex numbers.

$$
\mathcal{L}\left\{A e^{-9 t} \cos (3 t)+B \sin e^{-9 t} \sin (3 t)\right\}=\frac{A(s+9)}{(s+9)^{2}+3^{2}}+\frac{B(3)}{(s+9)^{2}+3^{2}}
$$

We can put the partial fraction terms over a common denominator so we can match up the numerator with the given $V(s)$. Note that the factor of $1 / 3$ is left out until the end.

$$
V(s)=\frac{1}{3} \cdot \frac{s+13.5}{(s+9)^{2}+3^{2}}=\frac{1}{3} \cdot \frac{A(s+9)+B(3)}{(s+9)^{2}+3^{2}}
$$

We equate the numerators and match the coefficients of each power of s.

$$
s+13.5=A(s+9)+B(3)=A s+(9 A+3 B)
$$

From the coefficient for s, we find A :

$$
A=1
$$

From the constant term, we have a second equation involving B.

$$
13.5=9 A+3 B
$$

Substituting for A, we have an equation for B.

$$
13.5=9+3 B
$$

$$
B=1.5
$$

We multiply the inverse transform by $u(t)$, just to remind ourselves that we don't know the value of $v(t)$ for $t<0$. Remember to multiply by $1 / 3$!

$$
\left[\frac{1}{3} e^{-9 t} \cos (3 t)+\frac{1}{2} \sin e^{-9 t} \sin (3 t)\right] u(t)
$$

b) We use the initial value theorem:

$$
\lim _{t \rightarrow 0^{+}} v(t)=\lim _{s \rightarrow \infty} s V(s)
$$

Thus,

$$
\lim _{t \rightarrow 0^{+}} v(t)=\lim _{s \rightarrow \infty} s V(s)=\lim _{s \rightarrow \infty} s \frac{5(s+0.8)(s+0.6)+4}{(s+2)\left[(s+0.6)^{2}+(0.8)^{2}\right]}
$$

or, using the only the highest power of s (which dominates as s approaches infinity) in sums, we find the value of the limit.

$$
\lim _{t \rightarrow 0^{+}} v(t)=\lim _{s \rightarrow \infty} s V(s)=\lim _{s \rightarrow \infty} s \frac{5 s^{2}}{s^{3}}=5
$$

