Ex:

Given the resistors connected as shown, with $R_{1}=2 \mathrm{k} \Omega$, and using not more than an additional one each R, C, and L in the dashed-line box, design a circuit to go in the dashed-line box that will produce the $|\mathrm{H}(j \omega)|$ vs. ω shown above. That is:

$$
|H(j \omega)|=\frac{1}{2} \text { at } \omega=0 \quad \text { and } \quad \lim _{\omega \rightarrow \infty}|H(j \omega)|=\frac{2}{3}
$$

a) Show how the components would be connected in the circuit by drawing them in the box above. Note: component values are not required for this part.
b) Give the value of R_{2}.

Sol'n: a) This problem may be solved by using a single R and L in the configuration shown below:

This problem may also be solved by using a single R and C in the configuration shown below.

One or more solutions may be possible that include both an L and C, although these filters are likely to have ripples in the gain curve.
b) The value of R_{2} will depend on the configuration used in part (a). For the solution with the R and L above, the value of R_{2} is dictated by the gain at $\omega=0$, since the L shorts out R_{3} at this frequency.

$$
\frac{R_{2}}{R_{1}+R_{2}}=\frac{1}{2} \Rightarrow R_{2}=2 \mathrm{k} \Omega
$$

The value of R_{3} for this configuration would be $2 \mathrm{k} \Omega$. (L becomes an open as ω approaches infinity, so there is a voltage divider formed by R_{1}, R_{2}, and R_{3}.)

For the solution with the R and C above, the value of R_{2} is dictated by the gain for $\omega->\infty$, since the C shorts out R_{3} at this frequency.

$$
\frac{R_{2}}{R_{1}+R_{2}}=\frac{2}{3} \Rightarrow R_{2}=4 \mathrm{k} \Omega
$$

The value of R_{3} for this configuration would be $2 \mathrm{k} \Omega$. (C becomes an open for $\omega=0$, so there is a voltage divider formed by R_{1}, R_{2}, and R_{3}.)

