

Ex: ++ $R_1 = 2 \text{ k}\Omega$ vi v_o Ro |H|1 2/3 1/2

Given the resistors connected as shown, with $R_1 = 2 \text{ k}\Omega$, and using not more than an additional one each *R*, *C*, and *L* in the dashed-line box, design a circuit to go in the dashed-line box that will produce the $|\text{H}(j\omega)|$ vs. ω shown above. That is:

ω

$$|H(j\omega)| = \frac{1}{2}$$
 at $\omega = 0$ and $\lim_{\omega \to \infty} |H(j\omega)| = \frac{2}{3}$

- a) Show how the components would be connected in the circuit by drawing them in the box above. **Note:** component *values* are not required for this part.
- b) Give the value of R_2 .

0

This problem may also be solved by using a single R and C in the configuration shown below.

One or more solutions may be possible that include both an L and C, although these filters are likely to have ripples in the gain curve.

b) The value of R_2 will depend on the configuration used in part (a). For the solution with the *R* and *L* above, the value of R_2 is dictated by the gain at $\omega = 0$, since the *L* shorts out R_3 at this frequency.

$$\frac{R_2}{R_1 + R_2} = \frac{1}{2} \implies R_2 = 2 \,\mathrm{k}\Omega$$

The value of R_3 for this configuration would be 2 k Ω . (*L* becomes an open as ω approaches infinity, so there is a voltage divider formed by R_1 , R_2 , and R_3 .)

For the solution with the *R* and *C* above, the value of R_2 is dictated by the gain for $\omega \rightarrow \infty$, since the *C* shorts out R_3 at this frequency.

$$\frac{R_2}{R_1 + R_2} = \frac{2}{3} \implies R_2 = 4 \,\mathrm{k}\Omega$$

The value of R_3 for this configuration would be 2 k Ω . (*C* becomes an open for $\omega = 0$, so there is a voltage divider formed by R_1 , R_2 , and R_3 .)