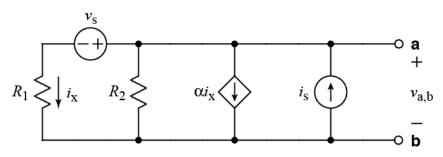
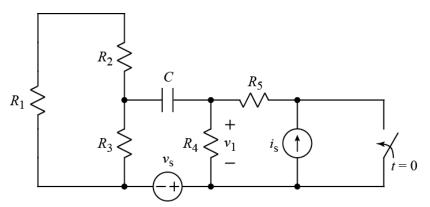
1.



- a) Using superposition, derive an expression for $v_{a,b}$ that contains no circuit quantities other than i_s , v_s , R_1 , R_2 , and α . Current i_x must not appear in your solution. Note: $\alpha \ge 0$.
- b) Make a consistency check on your expression for $v_{a,b}$ by setting resistors and sources to numerical values for which the value of $v_{a,b}$ is obvious. State the values of resistors and sources for your consistency check, and show that your expression for $v_{a,b}$ is satisfied for these values. (In other words, plug the values into your expression from part (a) and show that it agrees with the value from your consistency check.)
- c) Find the Thevenin equivalent circuit at terminals **a** and **b**. Express the Thevenin voltage, v_{Th} , and Thevenin resistance, R_{Th} in terms of no circuit quantities other than i_s , v_s , R_1 , R_2 , and α . i_x must not appear in your solution. Note: $\alpha \ge 0$.
- d) Find an expression for the value of R_L connected from **a** to **b** that would absorb maximum power. Your answer must be written in terms of no circuit quantities other than i_s , v_s , R_1 , R_2 , and α . Note: $\alpha \ge 0$.

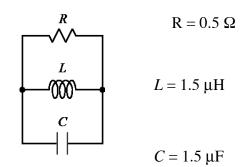


After being open for a long time, the switch closes at t = 0. $v_s = 28 \text{ V}$ $i_s = 112 \text{ mA}$ C = 2 nF $R_1 = 43 \Omega$ $R_2 = 47 \Omega$ $R_3 = 120 \Omega$ $R_4 = 750 \Omega$ $R_5 = 1 \text{ k}\Omega$

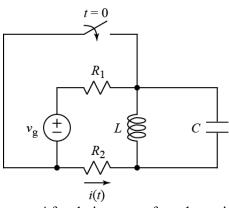
a) Calculate the energy stored in the capacitor at $t = 0^+$.

b) Write a numerical time-domain expression for $v_1(t>0)$, the voltage across R_4 .

2.



- a) Find the characteristic roots, s_1 and s_2 , for the above circuit.
- b) Is the circuit over-damped, critically-damped, or under-damped? Explain.
- c) If the L and C values in the circuit are decreased by a factor of two, (and R remains the same), what kind of damping results?



After being open for a long time, the switch closes at t = 0.

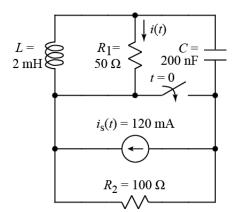
a) Give expressions for the following in terms of no more than v_g , R_1 , $R_2 L$, and C:

$$i(t=0^+)$$
 and $\frac{di(t)}{dt}\Big|_{t=0^+}$

b) Find the numerical value of R_2 given the following information:

$$R_1 = 150 \,\Omega$$
 $L = 40 \,\text{mH}$ $C = 3.2 \,\mu\text{F}$ $\alpha = 1250 \,\text{r/s}$ $\omega_d = 2500 \,\text{r/s}$

5.



After being open for a long time, the switch closes at t = 0.

- a) Find characteristic roots and whether i(t) is under-, over-, or critically-damped.
- b) Write a numerical time-domain expression for i(t), t > 0, the current through R_1 .

Answers:

1.a)
$$v_{a,b} = v_s \frac{R_2(1+\alpha)}{R_1 + R_2(1+\alpha)} + i_s \frac{R_1 R_2}{(1+\alpha)R_2 + R_1}$$
 c) $R_{Th} = \frac{R_1 R_2}{(1+\alpha)R_2 + R_1}$ d) $R_L = R_{Th}$

- 2.a) $w_{\rm C}(0^+) = 12.544 \,\mu \text{J}$ b) $v_1(t > 0) = 75e^{-960 \,\text{ns}} \,\text{V}$
- 3.a) Duplicate roots = -2/3 Mr/s b) critically damped c) critically damped

4.a) Partial answer:
$$\frac{di(t)}{dt}\Big|_{t=0^+} = \frac{1}{R_2} \frac{i_C(t=0^+)}{C} = -\frac{v_g}{R_2 C(R_1 + R_2)}$$
. b) $R_2 = 125 \ \Omega$.

5.a) $s_{1,2} = -50 \text{ kr/s}$, critically damped b) $i(t) = 240 \text{ mA} e^{-50 \text{ k} t} - 12 \text{ kA/s} t e^{-50 \text{ k} t}$