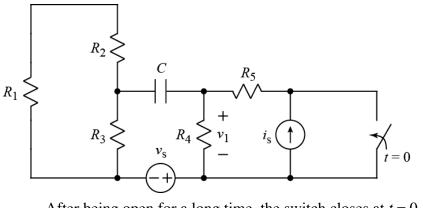
Ex:



After being open for a long time, the switch closes at t = 0. $v_s = 28 \text{ V}$ $i_s = 112 \text{ mA}$ C = 2 nF $R_1 = 43 \Omega$ $R_2 = 47 \Omega$ $R_3 = 120 \Omega$ $R_4 = 750 \Omega$ $R_5 = 1 \text{ k}\Omega$

- a) Calculate the energy stored in the capacitor at $t = 0^+$.
- b) Write a numerical time-domain expression for $v_1(t>0)$, the voltage across R_4 .
- **SOL'N:** a) To find the charge on the capacitor at $t = 0^+$, we consider time $t = 0^-$. At $t = 0^-$, we treat the *C* as an open circuit, and the switch is open. In this case, R_5 is in series with current source i_s and may be ignored. Since *C* is open, current i_s flows in R_4 , giving rise to a voltage across R_4 . The three resistors on the left collapse into one resistor, and we observe that no current flows in v_s . We conclude that the voltage across *C* is the voltage drop across R_4 and v_s .

$$v_{\rm C}(0^-) = v_{\rm s} + i_{\rm s}R_4 = 28\,{\rm V} + 112\,{\rm mA} \cdot 750\,\Omega = 28\,{\rm V} + 84\,{\rm V} = 112\,{\rm V}$$

The voltage on the capacitor right after the switch moves is the same as the voltage just before the switch moves:

 $v_{\rm C}(0^+) = v_{\rm C}(0^-) = 112 \,{\rm V}$

Now we can calculate the desired energy:

$$w_{\rm C}(0^+) = \frac{1}{2}Cv_{\rm C}^2 = \frac{1}{2}2n(112)^2 \,\mathrm{J} = 12.544\,\mu\mathrm{J}$$

b) We use the general formula for RC solutions:

$$v_1(t > 0) = v_1(t \to \infty) + [v_1(0^+) - v_1(t \to \infty)]e^{-\frac{t}{R_{\text{Th}}C}}$$

First we consider time approaching infinity. The capacitor will act like an open circuit, and the switch will be closed, shorting out i_s . All of i_s will flow in the switch, rather than through R_4 and R_5 . No current in R_4 means we have no voltage drop across R_4 .

$$v_1(t \rightarrow \infty) = 0 V$$

Second, we consider $t = 0^+$. We replace the three resistors on the left side with one resistor:

$$R_{\text{Eq}} = (R_1 + R_2) \| R_3 = (43\Omega + 47\Omega) \| 120\Omega = 90\Omega \| 120\Omega$$

or

$$R_{\rm Eq} = 30\,\Omega \cdot 3 \,\|\,4 = 30\,\Omega \cdot \frac{12}{7}$$

We may ignore i_s since it is shorted out by the switch, and we model the *C* as a voltage source of value $v_C(0^+) = v_C(0^-) = 112 \text{ V}$. We are left with resistors and two voltage sources. Our value of v_1 is given by a voltage divider:

$$v_1(0^+) = (v_{\rm C} - v_{\rm s}) \frac{R_4 \parallel R_5}{R_{\rm Eq} + R_4 \parallel R_5} = 84 \,{\rm V} \frac{250\,\Omega \cdot \frac{12}{7}}{280\,\Omega \cdot \frac{12}{7}} = 75 \,{\rm V}$$

Third, we find R_{Th} by turning off the independent sources and looking into the circuit from the terminals where *C* is attached.

$$R_{\text{Th}} = R_{\text{Eq}} + R_4 \parallel R_5 = 30\,\Omega \cdot \frac{12}{7} + 250\,\Omega \cdot 3 \parallel 4 = 30\,\Omega \cdot \frac{12}{7} + 250\,\Omega \cdot \frac{12}{7}$$

or

$$R_{\rm Th} = 280\,\Omega \cdot \frac{12}{7} = 40\,\Omega \cdot 12 = 480\,\Omega$$

The time constant is $\tau = R_{\text{Th}}C$.

$$\tau = 480\,\Omega \cdot 2\,\mathrm{nF} = 960\,\mathrm{ns}$$

Fourth and last, we plug values into the general solution:

$$v_1(t > 0) = 0 + [75 - 0]e^{-\frac{t}{960 \text{ ns}}} V = 75e^{-\frac{t}{960 \text{ ns}}} V$$