1. Find the Laplace transforms of the following waveforms:
a) $\left(t^{2}-1\right) u(t-1)$
b) $\frac{d}{d t}\left[e^{-a t} \sin (\omega t)\right]$
c) $\frac{e^{-2 t}}{t}$
d) $\int_{0}^{t} t e^{-a t} d t$
2. Show that the following identity is valid:

$$
\mathcal{L}\{t f(t)\}=-\frac{d}{d s} F(s)
$$

3. Find the inverse Laplace transform for each of the following expressions:
a) $\quad F(s)=\frac{4 s+11}{s^{2}+3 s+2}$
b) $\quad F(s)=\frac{7}{\left(s^{2}+6 s+58\right)}$
c) $\quad F(s)=-\frac{3 s^{2}+3}{s^{4}}$
d) $\quad F(s)=\frac{6 s^{2}+36 s+198}{(s+3)\left(s^{2}+6 s+45\right)}$
4. Laplace transforms are useful for solving linear differential equations that arise in many settings. Consider a linearized model of a motor with a torque control system, for example, where the actual torque of the motor relative to a desired torque is described by the following Laplace transform:

$$
H(s)=\frac{\frac{k_{P}}{L}\left(s+\frac{k_{I}}{k_{P}}\right)}{s^{2}+\frac{k_{P}}{L} s+\frac{k_{I}}{L}}
$$

where $L=1 \mathrm{mH}=$ inductance of motor windings

$$
\begin{aligned}
& k_{P}=\text { gain for proportional feedback } \\
& k_{I}=\text { gain for integral feedback }
\end{aligned}
$$

The inverse Laplace transform of $H(s)$ contains multiplicative factors of the form $e^{-a t}$ that determine how fast time waveforms decay to zero. This decay corresponds to how rapidly the motor torque reaches a desired value. A faster decay is desirable.

Equal roots, (i.e., critical damping), is optimal if vibration (oscillatory solutions) must be eliminated.
a) If $k_{P}=3.2$, find the value of k_{I} that yields critical damping.
b) Find the inverse Laplace transform of $H(s)$ for the values from part (a).
5. Find the inverse Laplace transform of $\frac{1}{(s+a)^{n}}$.

Answers:
1.a) $2 e^{-s}\left(\frac{s+1}{s^{3}}\right)$
b) $\frac{s \omega}{(s+a)^{2}+\omega^{2}}$
c) ∞
d) $\frac{1}{s(s+a)^{2}}$
2. Hint: transform the right side into the left side.
3.a) $f(t)=7 e^{-t}-3 e^{-2 t}$
b) $f(t)=e^{-3 t} \sin (7 t) u(t)$
c) $f(t)=-\frac{t^{3}}{2}-3 t$
d) $\left[4 e^{-3 t}+2 e^{-3 t} \cos (6 t)\right] u(t)$
4.a) $k_{I}=2.56 \mathrm{k}$
b) $h(t)=3.2 \mathrm{k} e^{-t / 0.625 \mathrm{~ms}}(1-800 t)=3.2 \mathrm{k} e^{-t / 0.625 \mathrm{~ms}}(1-t / 0.625 \mathrm{~ms})$
5. Hint: try to deduce the identity, then to prove it is always correct, assume the identity works for n and show it works for $n+1$ (induction proof).

