Ex: \quad Find the Laplace transforms of the following waveform:

$$
\left(t^{2}-1\right) u(t-1)
$$

Sol'n: To create a form that allows us to apply the time delay identity, we replace t with $(t-1+1)$ in the part preceding the step function:

$$
\left([(t-1)+1]^{2}-1\right) u(t-1)
$$

Now we apply the delay identity:

$$
\mathcal{L}\{f(t-a) u(t-a)\}=e^{-a s} \mathcal{L}\{f(t)\}
$$

This means we replace $t-1$ with t before taking the Laplace transform:

$$
\mathcal{L}\left\{\left([(t-1)+1]^{2}-1\right) u(t-a)\right\}=e^{-s} \mathcal{L}\left\{[t+1]^{2}-1\right\}
$$

Expanding the quadratic term yields the following result:

$$
e^{-s} \mathcal{L}\left\{[t+1]^{2}-1\right\}=e^{-s} \mathcal{L}\left\{t^{2}+2 t\right\}=e^{-s}\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}\right)=2 e^{-s}\left(\frac{s+1}{s^{3}}\right)
$$

