Ex: Find the Laplace transform of

$$
\int_{0}^{t} t e^{-a t} d t
$$

Sol'n: We use the integral identity:

$$
\mathcal{L}\left\{\int_{0}^{t} f(t) d t\right\}=\frac{F(s)}{s}
$$

From a table, we have $F(s)$

$$
F(s)=\mathcal{L}\left\{t e^{-a t}\right\}=\frac{1}{(s+a)^{2}}
$$

To obtain our final answer, we need only divide by s :

$$
\mathcal{L}\left\{\int_{0}^{t} t e^{-a t} d t\right\}=\frac{1}{s(s+a)^{2}}
$$

Note: We could compute the integral first and then Laplace transform, but this would be more tedious.

