Ex: \quad Find the inverse Laplace transform for the following expression:

$$
F(s)=\frac{4 s+11}{s^{2}+3 s+2}
$$

Sol'n: We use partial fractions. The first step in using partial fractions is always to factor the denominator into root terms:

$$
F(s)=\frac{4 s+11}{(s+1)(s+2)}
$$

The second step in using partial fractions is to write $F(s)$ in terms of unknown constant coefficients for each root term.

$$
F(s)=\frac{A_{1}}{s+1}+\frac{A_{2}}{s+2}
$$

Note: To find the root terms for a quadratic denominator, we can use the quadratic formula to find the roots:

$$
s_{1,2}=\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^{2}-c}
$$

where the denominator is

$$
s^{2}+b s+c
$$

(If the coefficient of the s^{2} term is not equal to one, divide the numerator and denominator by that coefficient.)

Having found the roots, we write the denominator as root terms:

$$
s^{2}+b s+c=\left(s-s_{1}\right)\left(s-s_{2}\right)
$$

Note: This discussion assumes all roots are distinct. See other examples for how to treat repeated roots.

The third step is to find A_{1} and A_{2} by one of several methods. One method is removing the pole and evaluating at the pole value:

$$
A_{1}=\left.(s+1) F(s)\right|_{s=-1} \quad \text { and } \quad A_{2}=\left.(s+2) F(s)\right|_{s=-2}
$$

To see why this works we observe what happens to the partial fraction expression when we perform these operations:

$$
A_{1}=\left.(s+1) F(s)\right|_{s=-1}=\left.\frac{(s+1) A_{1}}{(s+1)}\right|_{s=-1}+\left.\frac{(s+1) A_{2}}{(s+2)}\right|_{s=-1}=A_{1}+\frac{0 \cdot A_{2}}{(-1+2)}=A_{1}
$$

For the present problem, we proceed with the calculations:

$$
\begin{aligned}
& A_{1}=\left.(s+1) F(s)\right|_{s=-1}=\left.\frac{4 s+11}{s+2}\right|_{s=-1}=\frac{4(-1)+11}{-1+2}=\frac{7}{1}=7 \\
& A_{2}=\left.(s+2) F(s)\right|_{s=-2}=\left.\frac{4 s+11}{s+1}\right|_{s=-2}=\frac{4(-2)+11}{-2+1}=\frac{3}{-1}=-3
\end{aligned}
$$

This gives us the partial fraction expansion:

$$
F(s)=\frac{7}{s+1}+\frac{-3}{s+2}=7 \cdot \frac{1}{s+1}+-3 \cdot \frac{1}{s+2}
$$

The fourth step is to use the following basic transform pair to invert each of the terms:

$$
\mathcal{L}\left\{e^{-a t}\right\}=\frac{1}{s+a}
$$

This yields our final answer:

$$
f(t)=7 e^{-t}-3 e^{-2 t}
$$

A second or alternative method for finding A_{1} and A_{2} is to use a common denominator:

$$
F(s)=\frac{A_{1}}{s+1}+\frac{A_{2}}{s+2}=\frac{A_{1}(s+2)+A_{2}(s+1)}{(s+1)(s+2)}=\frac{4 s+11}{(s+1)(s+2)}
$$

Equating coefficients for each power of s in the numerator yields two equations to be solved:

$$
\begin{aligned}
& A_{1}+A_{2}=4 \\
& A_{1} \cdot 2+A_{2} \cdot 1=11
\end{aligned}
$$

Solving these two equations yields the same result as before:

$$
A_{1}=7 \quad \text { and } \quad A_{2}=-3
$$

$$
\begin{aligned}
& F(s)=\frac{7}{s+1}+\frac{-3}{s+2} \\
& f(t)=7 e^{-t}-3 e^{-2 t}
\end{aligned}
$$

A third method for finding A_{1} and A_{2} is to substitute convenient values of s in $F(s)$ and find the values of A_{1} and A_{2} that yield these values of $F(s)$:

$$
\begin{aligned}
& \left.F(s)\right|_{s=0}=\left.\frac{A_{1}}{s+1}\right|_{s=0}+\left.\frac{A_{2}}{s+2}\right|_{s=0}=A_{1}+\frac{A_{2}}{2}=\frac{4 \cdot 0+11}{(0+1)(0+2)}=\frac{11}{2} \\
& \left.F(s)\right|_{s=1}=\left.\frac{A_{1}}{s+1}\right|_{s=1}+\left.\frac{A_{2}}{s+2}\right|_{s=1}=\frac{A_{1}}{2}+\frac{A_{2}}{3}=\frac{4 \cdot 1+11}{(1+1)(1+2)}=\frac{15}{6}=\frac{5}{2}
\end{aligned}
$$

Note: \quad We are free to use any desired values of s with the following exception: the values of s used must not be roots. Here, we must not use $s=-1$ and $s=-2$.

Multiplying our two equations by 2 and 6, respectively, yields two simultaneous equations to be solved for A_{1} and A_{2} :

$$
\begin{aligned}
& 2 A_{1}+A_{2}=11 \\
& 3 A_{1}+2 A_{2}=15
\end{aligned}
$$

Solving these two equations yields the same result as before:

$$
\begin{aligned}
& A_{1}=7 \quad \text { and } \quad A_{2}=-3 \\
& F(s)=\frac{7}{s+1}+\frac{-3}{s+2} \\
& f(t)=7 e^{-t}-3 e^{-2 t}
\end{aligned}
$$

