Ex: Find the inverse Laplace transform for the following expression:

$$
F(s)=\frac{7}{\left(s^{2}+6 s+58\right)}
$$

Sol'n: Because the constant term of the quadratic in the denominator is larger than the square of half the middle coefficient, the quadratic has complex roots.

$$
s^{2}+6 s+58=(s+3+j 7)(s+3-j 7)=(s+a+j \omega)(s+a-j \omega)
$$

or

$$
s^{2}+6 s+58=(s+3)^{2}+7^{2}=(s+a)^{2}+\omega^{2}
$$

We observe that $F(s)$ has the form of a transformed decaying sine:

$$
F(s)=\frac{7}{\left(s^{2}+6 s+58\right)}=\frac{\omega}{(s+a)^{2}+\omega^{2}}=\mathcal{L}\left[e^{-a t} \sin (\omega t)\right]
$$

Thus, we can write down our answer directly:

$$
f(t)=e^{-3 t} \sin (7 t) u(t)
$$

Note: We add $u(t)$ to indicate that the value in the time domain is unknown.

