Ex: Laplace transforms are useful for solving linear differential equations that arise in many settings. Consider a linearized model of a motor with a torque control system, for example, where the actual torque of the motor relative to a desired torque is described by the following Laplace transform:

$$
H(s)=\frac{\frac{k_{P}}{L}\left(s+\frac{k_{I}}{k_{P}}\right)}{s^{2}+\frac{k_{P}}{L} s+\frac{k_{I}}{L}}
$$

where $L=1 \mathrm{mH}=$ inductance of motor windings
$k_{P}=$ gain for proportional feedback
$k_{I}=$ gain for integral feedback
The inverse Laplace transform of $H(s)$ contains multiplicative factors of the form $e^{-a t}$ that determine how fast time waveforms decay to zero. This decay corresponds to how rapidly the motor torque reaches a desired value. A faster decay is desirable.

Equal roots, (i.e., critical damping), is optimal if vibration (oscillatory solutions) must be eliminated.
a) If $k_{P}=3.2$, find the value of k_{I} that yields critical damping.
b) Find the inverse Laplace transform of $H(s)$ for the values from part (a).

SoL'N: a) When the roots are equal, the denominator must be of the following form:

$$
(s+a)^{2}=s^{2}+2 a s+a^{2}
$$

From the given values, we have the following results:

$$
\begin{aligned}
& a=\frac{k_{P}}{2 L}=\frac{3.2}{2 \cdot 1 \mathrm{~m}}=1.6 \mathrm{k} \\
& a^{2}=(1.6 \mathrm{k})^{2}=\frac{k_{I}}{L}=\frac{k_{I}}{1 \mathrm{~m}} \text { or } k_{I}=2.56 \mathrm{k}
\end{aligned}
$$

Note: Because of notational difficulties, units are missing from the above quantities. The s variable is easily confused with "s" used for units of seconds. In addition, because the Laplace integral is with respect to time, quantities in the s-domain may have units such Vs and As, or the extra units may appear as part of the Laplace transform result, (i.e., as something like
$V(s)=\frac{1}{s}$). Consequently, units will be dispensed with in calculations here.
b) Using our symbolic $a=1.6 \mathrm{k}$ to express the denominator, and expressing the numerator in terms of a as well, yields the following equation:

$$
H(s)=\frac{\frac{k_{P}}{L}\left(s+\frac{k_{I}}{k_{P}}\right)}{s^{2}+\frac{k_{P}}{L} s+\frac{k_{I}}{L}}=\frac{2 a\left(s+\frac{2.56 \mathrm{k}}{3.2}\right)}{(s+a)^{2}}
$$

The partial fraction expansion when there is a repeated root requires that we have terms for each power of the root that appears in the denominator. There is only a constant in the numerator of each root term, however.

$$
H(s)=\frac{A}{(s+a)^{2}}+\frac{B}{s+a}
$$

To find the coefficient of the highest-power root term, we may use the pole cover-up method slightly modified by multiplying by the highest order root term. As before, we then evaluate at the root value:

$$
A=\left.(s+a)^{2} H(s)\right|_{s=-a}
$$

or

$$
A=\left.(s+a)^{2} \frac{2 a\left(s+\frac{2.56 \mathrm{k}}{3.2}\right)}{(s+a)^{2}}\right|_{s=-a}=\left.2 a\left(s+\frac{2.56 \mathrm{k}}{3.2}\right)\right|_{s=-a}
$$

or

$$
A=2(1.6 \mathrm{k})\left(-1.6 \mathrm{k}+\frac{2.56 \mathrm{k}}{3.2}\right)=3.2 \mathrm{k}(-1.6 \mathrm{k}+0.8 \mathrm{k})
$$

or

$$
A=3.2 \mathrm{k}(-0.8 \mathrm{k})=3.2 \mathrm{k}(-800)=-2.56 \mathrm{M}
$$

To find B an easy approach is to put the partial fraction terms over a common denominator and then match the numerator to the original numerator of $H(s)$:

$$
H(s)=\frac{2 a\left(s+\frac{2.56 \mathrm{k}}{3.2}\right)}{(s+a)^{2}}=\frac{A}{(s+a)^{2}}+\frac{B}{s+a}=\frac{A}{(s+a)^{2}}+\frac{B(s+a)}{(s+a)^{2}}
$$

To match the numerators, the coefficients of the powers of s must match. The coefficient of s is $2 a$ on the left, which must equal the coefficient of s on the right, which is B.

$$
B=2 a=2(1.6 \mathrm{k})=3.2 \mathrm{k}
$$

The inverse Laplace transform now follows:

$$
h(t)=A t e^{-a t}+B e^{-a t}=-2.56 \mathrm{M} t e^{-a t}+3.2 \mathrm{k} e^{-a t}
$$

Using the value of a in the exponents but expressing it as a time constant, (i.e., as $1 / a$), we have the final numerical answer:

$$
h(t)=3.2 \mathrm{k} e^{-t / 0.625 \mathrm{~ms}}(1-800 t)=3.2 \mathrm{k} e^{-t / 0.625 \mathrm{~ms}}(1-t / 0.625 \mathrm{~ms})
$$

