Ex: \quad Find $f(t)$ if $F(s)=\frac{5 s-62}{s^{2}+6 s+58}-\frac{8}{s}$.

Sol'n: First, we find the roots of the quadratic denominator. Since half the coefficient, 6 , of s when squared is less than the constant term, 58 , the roots are complex.

$$
s=-a \pm j \omega
$$

To find a and ω, we expand the denominator as follows:

$$
s^{2}+6 s+58=(s+a)^{2}+\omega^{2}=s^{2}+2 a s+a^{2}+\omega^{2}
$$

From the coefficient of s, we find a :

$$
a=\frac{6}{2}=3
$$

Using this value of a, we solve for ω :

$$
a^{2}+\omega^{2}=3^{2}+\omega^{2}=58
$$

or

$$
\omega^{2}=49
$$

or

$$
\omega=7
$$

We write the first term of $F(s)$ as a sum of a decaying cosine and sine (in the time domain):

$$
F(s)=\frac{K_{1}(s+3)+K_{2} \omega}{s^{2}+6 s+58}-\frac{8}{s}
$$

Equating the numerators by matching the coefficients of each power of s, starting with the highest, yields the values of K_{1} and K_{2} :

$$
K_{1}(s+a)+K_{2} \omega=K_{1} s+K_{1} 3+K_{2} 7=5 s-62
$$

or

$$
K_{1} s=5 s \quad \text { and } \quad K_{1} 3+K_{2} 7=-62
$$

or

$$
K_{1}=5 \quad \text { and } \quad K_{2}=-11
$$

Now we can write $F(s)$ in a form that allows us to invert it directly:

$$
F(s)=5 \frac{s+3}{s^{2}+6 s+58}-11 \frac{7}{s^{2}+6 s+58}-\frac{8}{s}
$$

Taking the inverse transform yields the final answer:

$$
f(t)=5 e^{-3 t} \cos (7 t)-11 e^{-3 t} \sin (7 t)-8 u(t)
$$

