Ex: Find f(t) if $F(s) = \frac{5s-62}{s^2+6s+58} - \frac{8}{s}$.

SOL'N: First, we find the roots of the quadratic denominator. Since half the coefficient, 6, of *s* when squared is less than the constant term, 58, the roots are complex.

$$s = -a \pm j\omega$$

To find *a* and ω , we expand the denominator as follows:

$$s^{2} + 6s + 58 = (s + a)^{2} + \omega^{2} = s^{2} + 2as + a^{2} + \omega^{2}$$

From the coefficient of *s*, we find *a*:

$$a = \frac{6}{2} = 3$$

Using this value of a, we solve for ω :

$$a^2 + \omega^2 = 3^2 + \omega^2 = 58$$

or

 $\omega^2 = 49$

or

$$\omega = 7$$

We write the first term of F(s) as a sum of a decaying cosine and sine (in the time domain):

$$F(s) = \frac{K_1(s+3) + K_2\omega}{s^2 + 6s + 58} - \frac{8}{s}$$

Equating the numerators by matching the coefficients of each power of s, starting with the highest, yields the values of K_1 and K_2 :

$$K_1(s+a) + K_2\omega = K_1s + K_13 + K_27 = 5s - 62$$

or

$$K_1 s = 5s$$
 and $K_1 3 + K_2 7 = -62$

or

$$K_1 = 5$$
 and $K_2 = -11$

Now we can write F(s) in a form that allows us to invert it directly:

$$F(s) = 5\frac{s+3}{s^2+6s+58} - 11\frac{7}{s^2+6s+58} - \frac{8}{s}$$

Taking the inverse transform yields the final answer:

$$f(t) = 5e^{-3t}\cos(7t) - 11e^{-3t}\sin(7t) - 8u(t)$$