Ex: \quad Plot the poles and zeros of $\mathrm{F}(s)$ in the s plane.

$$
F(s)=\frac{s^{2}-9}{s\left[(s+1)^{2}+4\right]}
$$

Sol'n: The zeros are the roots of the numerator, and the poles are the roots of the denominator:

$$
F(s)=\frac{(s+3)(s-3)}{s(s+1+j 2)(s+1-j 2)}
$$

Note: The roots of the quadratic in the denominator follow from the form in which the denominator was written:

$$
(s+a)^{2}+\omega^{2}=(s+a+j \omega)(s+a-j \omega)
$$

We plot the zeros as \mathbf{o} 's and the poles as \mathbf{x} 's:

