1.

Note: The 3 V in the $v_{g}(t)$ source is always on.
a) Write the Laplace transform, $V_{\mathrm{g}}(s)$, of $v_{\mathrm{g}}(t)$.
b) Draw the s-domain equivalent circuit, including source $V_{\mathrm{g}}(s)$, components, initial conditions for L, and terminals for $V_{0}(s)$.
2. c) Write an expression for $V_{0}(s)$.
d) Apply the initial value theorem to find $\lim _{t \rightarrow 0+} v_{\mathrm{o}}(t)$.
3.

a) Write the Laplace transform, $\mathrm{V}_{\mathrm{g} 2}(s)$, of $v_{\mathrm{g} 2}(t)$.
b) Draw the s-domain equivalent circuit, including sources $\mathrm{V}_{\mathrm{g} 1}(s)$ and $\mathrm{V}_{\mathrm{g} 2}(s)$, components, initial conditions for C , and terminals for $\mathrm{V}_{\mathrm{o}}(\mathrm{s})$.
4. a) For the circuit in problem 3, write an expression for $\mathrm{V}_{\mathrm{o}}(\mathrm{s})$.
b) Apply the final value theorem to $\mathrm{V}_{\mathrm{O}}(\mathrm{s})$ to find $\lim _{t \rightarrow \infty} v_{\mathrm{o}}(t)$.
5.

a) Write the Laplace transform $I_{\mathrm{g}}(s)$ of $i_{\mathrm{g}}(t)$.
b) Write the Laplace transform $V_{\mathrm{O}}(s)$ of $v_{\mathrm{o}}(t)$. Be sure to include the effects of initial conditions, if they are nonzero.
c) Write a numerical time-domain expression for $v_{0}(t)$ where $t \geq 0$.

Answers:
1.a) $V_{g}(s)=\frac{3}{s}+6 \cdot \frac{8}{(s+2)^{2}+8^{2}}=\frac{3}{s}+\frac{48}{(s+2)^{2}+8^{2}}$
b)

2.c) $V_{\mathrm{O}}(s)=\left[V_{g}(s)+L i_{L}\left(0^{-}\right)\right] \frac{R}{s L+R}=\left[\frac{3}{s}+\frac{48}{(s+2)^{2}+8^{2}}+2\right] \frac{3}{2 s+3}$
d) $\lim _{t \rightarrow 0+} v_{0}(t)=3 \mathrm{~V}$
3.a) $V_{\mathrm{g} 2}=\frac{8}{s}$

$$
V_{g_{1}}(s)=\frac{12 s}{s^{2}+100^{2}}
$$

4.a) $V_{\mathrm{O}}(s)=\left(\frac{8}{s}+\frac{12 s}{s^{2}+100^{2}}--\frac{8}{s}\right) \frac{R}{R+\frac{1}{s C}}$
b) Chm does not apply because we have poles on the imaginary axis (solution oscillates forever).
5.a) $I_{g}(t)=\mathcal{L}\left\{i_{g}(t)\right\}=\mathcal{L}\{0\} \mathrm{A}=0 \mathrm{~A}$
b) $V_{\mathrm{O}}(s)=-75 \mathrm{~V} \frac{s+8}{(s+10)(s+40)}$
c) $v_{\mathrm{O}}(t \geq 0)=\left[5 e^{-10 t}-80 e^{-40 t}\right] u(t) \mathrm{V}$

