Ex:

Note: The 3 V in the $v_{g}(t)$ source is always on.
a) Write the Laplace transform, $V_{\mathrm{g}}(s)$, of $v_{\mathrm{g}}(t)$.
b) Draw the s-domain equivalent circuit, including source $V_{\mathrm{g}}(s)$, components, initial conditions for L, and terminals for $V_{0}(s)$.
c) Write an expression for $V_{0}(s)$.
d) Apply the initial value theorem to find $\lim _{t \rightarrow 0+} v_{0}(t)$.

Sol'N: a) We treat the 3 V as $3 u(t)$:

$$
V_{g}(s)=\frac{3}{s}+6 \cdot \frac{8}{(s+2)^{2}+8^{2}}=\frac{3}{s}+\frac{48}{(s+2)^{2}+8^{2}}
$$

b) We find initial conditions by considering the circuit at $t=0^{-}$. The source at that time is a constant 3 V , and the L acts like a wire.

$$
i_{L}\left(t=0^{-}\right)=\frac{3 V}{3 \Omega}=1 A
$$

For convenience, we use a series voltage source of value $L i_{L}\left(0^{-}\right)$for the initial conditions on the L :

c) We have a voltage-divider driven by the sum of the voltage sources:

$$
V_{\mathrm{o}}(s)=\left[V_{g}(s)+L i_{L}\left(0^{-}\right)\right] \frac{R}{s L+R}=\left[\frac{3}{s}+\frac{48}{(s+2)^{2}+8^{2}}+2\right] \frac{3}{2 s+3}
$$

d) We use the initial value theorem:

$$
\lim _{t \rightarrow 0+} v_{\mathrm{O}}(t)=\lim _{s \rightarrow \infty} s V_{\mathrm{O}}(s)=\lim _{s \rightarrow \infty} s\left[\frac{3}{s}+\frac{48}{(s+2)^{2}+8^{2}}+2\right] \frac{3}{2 s+3}
$$

We multiply through by s :

$$
\lim _{s \rightarrow \infty} s V_{\mathrm{o}}(s)=\lim _{s \rightarrow \infty}\left[3+\frac{48 s}{(s+2)^{2}+8^{2}}+2 s\right] \frac{3}{2 s+3}
$$

We need a polynomial over a polynomial so we can identify the highest power of s on the top and bottom:

$$
\lim _{s \rightarrow \infty} s V_{\mathrm{o}}(s)=\lim _{s \rightarrow \infty}\left[\frac{[3+2 s]\left[(s+2)^{2}+8^{2}\right]+48 s}{(s+2)^{2}+8^{2}}\right] \frac{3}{2 s+3}
$$

The result is as follows:

$$
\lim _{s \rightarrow \infty} s V_{\mathrm{o}}(s)=\frac{2 s^{3}}{s^{2}} \cdot \frac{3}{2 s}=3
$$

The above is the same as what we seek:

$$
\lim _{t \rightarrow 0+} v_{0}(t)=3 \mathrm{~V}
$$

