1. Give numerical answers to each of the following questions:
a) Find the value of $z=12-j 16+7+j 24$.
b) Find the magnitude of $z=15+j 8$.
c) Find the conjugate of $z=\frac{3+j 4}{j} \cdot \frac{-j}{3-j 4}$.
d) Find the value of $z=(1+j \sqrt{3})\left(\frac{\sqrt{3}}{4}-j \frac{1}{4}\right)$.
2. Compute each of the following sums using vectors in the complex plane:
a) $z=(1+j 3)+(-2+j)+(1-j 3)$
b) $z=\frac{1+j}{2}+\frac{1-j}{2}$
c) $z=(5+j 12)+(-24+j 10)$
d) $z=(1+j 0)+(-1+j \sqrt{3})+(-1-j \sqrt{3})+(1+j 0)$
3. Give numerical answers to each of the following questions:
a) Rationalize $\frac{4375-j 15,000}{7+j 24}$. Express your answer in rectangular form.
b) Find the magnitude of $\frac{1}{2}+j \frac{\sqrt{3}}{2}$.
c) Find the real part of $\frac{(1+j)^{4}}{1+j \sqrt{3}}$.
4. Euler's formula is $e^{j x}=\cos x+j \sin x$. A cosine may be expressed in terms of complex exponentials as follows:

$$
\cos x=\frac{e^{j x}+e^{-j x}}{2}
$$

Use the above formula as a basis for deriving the identity for the cosine of a sum of angles.

$$
\cos \left(x_{1}+x_{2}\right)=\frac{e^{j\left(x_{1}+x_{2}\right)}+e^{-j\left(x_{1}+x_{2}\right)}}{2}=\frac{e^{j x_{1}} e^{j x_{2}}+e^{-j x_{1}} e^{-j x_{2}}}{2}=\ldots
$$

5. If $z_{1}=j$, find a complex number, z_{2}, such that $z_{1}+z_{2}=z_{1} z_{2}$. Express z_{2} in rectangular (i.e., $a+j b$) form.

Answers:
1.a) $z=19+j 8$
b) 17
c) $\frac{7}{25}+j \frac{24}{25}$
d) $\frac{\sqrt{3}}{2}+j \frac{1}{2}$
2.a) vecs sum to j b) vecs sum to 1 on real axis c) vecs are perpendicular d) draws an equilateral triangle
3.a) -527-j336
b) 1
c) -1
4. $\quad \cos \left(x_{1}+x_{2}\right)=\cos \left(x_{1}\right) \cos \left(x_{2}\right)-\sin \left(x_{1}\right) \sin \left(x_{2}\right)$
5. $z_{2}=\frac{1}{2}-j \frac{1}{2}$

