Ex: Give numerical answers to each of the following questions:
a) Find the value of $z=12-j 16+7+j 24$.
b) Find the magnitude of $z=15+j 8$.
c) Find the conjugate of $z=\frac{3+j 4}{j} \cdot \frac{-j}{3-j 4}$.
d) Find the value of $z=(1+j \sqrt{3})\left(\frac{\sqrt{3}}{4}-j \frac{1}{4}\right)$.

Sol'n: a) Sum the real parts, and sum the imaginary parts.

$$
z=12+7-j 16+j 24=19+j 8
$$

b) Think of the complex number as a vector. Use the Pythagorean theorem to find the magnitude (or length) of this vector.

$$
|z|=\sqrt{15^{2}+8^{2}}=\sqrt{225+64}=\sqrt{289}=17
$$

c) We use an asterisk to designate a conjugate. To find the conjugate, we change each j to $-j$.

$$
z^{*}=\left(\frac{3+j 4}{j} \cdot \frac{-j}{3-j 4}\right)^{*}=\frac{3-j 4}{-j} \cdot \frac{j}{3+j 4}=\frac{j}{-j} \cdot \frac{3-j 4}{3+j 4}=-1 \cdot \frac{3-j 4}{3+j 4}
$$

Now we rationalize the denominator by multiplying top and bottom by the conjugate of the denominator.

$$
z^{*}=-\frac{3-j 4}{3+j 4} \cdot \frac{3-j 4}{3-j 4}=-\frac{9-16-j 12-j 12}{3^{2}+4^{2}}=\frac{7+j 24}{25}=\frac{7}{25}+j \frac{24}{25}
$$

d) We use the distributive property to multiply the numbers.

$$
z=(1+j \sqrt{3})\left(\frac{\sqrt{3}}{4}-j \frac{1}{4}\right)=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}-j \frac{1}{4}+j \sqrt{3}\left(\frac{\sqrt{3}}{4}\right)=\frac{\sqrt{3}}{2}+j \frac{1}{2}
$$

