1. a) Find the real part of $z=e^{j \pi / 4}$.
b) Find the rectangular form of $e^{j \pi / 3}$.
c) Find the rectangular form of $5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}$
d) Find the magnitude of $\left(\frac{j^{-1}}{3+j 4}\right)\left(\frac{10 e^{-j 15^{\circ}}}{(1+j)^{2}}\right)$.
e) Find the polar (magnitude and angle) form of $\sqrt{2+\sqrt{3}}-j \sqrt{2-\sqrt{3}}$
2. Given $\omega=10 \mathrm{krad} / \mathrm{s}$, for each of the following impedances, determine which of the following the impedance is from: a capacitor, an inductor, or a resistor. Also, find the value of that capacitor, inductor, or resistor. Recall that $z_{\mathrm{R}}=R, z_{\mathrm{L}}=j \omega L$, and $z_{\mathrm{C}}=1 / j \omega C$.
a) $j 40 \Omega$
b) $-j 1 \mathrm{k} \Omega$
c) $2 \mathrm{k} \Omega$
d) $j 8 \mathrm{k} \Omega$
e) $-j 100 \Omega$
3. Derive a symbolic expression for the impedance of $R+j \omega L$ in parallel with $\frac{1}{j \omega C}$ at frequency $\omega^{2}=\frac{1}{L C}$. Express the value in form $a+j b$.
4. Write phasors (in both $\mathrm{A} e^{j \phi}$ and $\mathrm{A} \angle \phi$ notations) for each of the following signals:
a) $v(t)=4 \cos \left(100 t+30^{\circ}\right) \mathrm{V}$
b) $i(t)=7 \sin \left(\omega t-45^{\circ}\right) \mathrm{mA}$
c) $i(t)=50 \mathrm{nF} \cdot \frac{d}{d t} 4 \cos \left(100 t+30^{\circ}\right) \mathrm{V}$
d) $\quad v(t)=17 \mu \mathrm{H} \cdot \frac{d}{d t} 7 \sin \left(60 t-45^{\circ}\right) \mathrm{mA}$
e) $v(t)=4 \cos \left(100 t+30^{\circ}\right) \mathrm{V}+3 \sin \left(100 t-150^{\circ}\right) \mathrm{V}$
5. Given $\omega=1 \mathrm{Mrad} / \mathrm{sec}$, write inverse phasors for each of the following signals:
a) $\mathbf{I}=6 e^{j 45^{\circ}} \mathrm{A}$
b) $\quad \mathbf{V}=j 9 \mathrm{~V}$
c) $\quad \mathbf{I}=-2 \mathrm{~A}$
d) $\quad \mathbf{V}=6(1+j) e^{j 45^{\circ}} \mathrm{V}$
e) $\mathbf{I}=e^{3+j 45^{\circ}} \mathrm{A}=e^{3} \angle 45^{\circ} \mathrm{A}$

Answers:
1.a) $\operatorname{Re}[z]=\frac{1}{\sqrt{2}}$
b) $z=\frac{1}{2}+j \frac{\sqrt{3}}{2}$
c) $20+20 \sqrt{3}$
d) 1
e) $2 \angle-15^{\circ}$
2.a) $L=4 \mathrm{mH}$
b) $C=0.1 \mu \mathrm{~F}$
c) $R=2 \mathrm{k} \Omega$
d) $L=0.8 \mathrm{H}$
e) $C=1 \mu \mathrm{~F}$
3. $z=\frac{L}{R C}-j \sqrt{\frac{L}{C}}$
4.a) $4 e^{j 30^{\circ}} \mathrm{V}$
b) $7 \angle-135^{\circ} \mathrm{mA}$
c) $20 e^{j 120^{\circ}} \mu \mathrm{A}$
d) $7.14 e^{-j 45^{\circ}} \mu \mathrm{V} \quad$ e) $5 \angle 66.9^{\circ} \mathrm{V}$
5.a) $6 \cos \left(1 \mathrm{M} t+45^{\circ}\right) \mathrm{A}$
b) $9 \cos \left(1 \mathrm{M} t+90^{\circ}\right) \mathrm{V}$
c) $2 \cos \left(1 \mathrm{M} t+180^{\circ}\right) \mathrm{A}$
d) $6 \sqrt{2} \cos \left(1 \mathrm{M} t+90^{\circ}\right) \mathrm{V}$
e) $e^{3} \cos \left(1 \mathrm{M} t+45^{\circ}\right) \mathrm{A}$

