Ex: a) Find the real part of $z=e^{j \pi / 4}$.
b) Find the rectangular form of $e^{j \pi / 3}$.
c) Find the rectangular form of $5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}$
d) Find the magnitude of $\left(\frac{j^{-1}}{3+j 4}\right)\left(\frac{10 e^{-j 15^{\circ}}}{(1+j)^{2}}\right)$.
e) Find the polar (magnitude and angle) form of $\sqrt{2+\sqrt{3}}-j \sqrt{2-\sqrt{3}}$

Sol'n: a) Use Euler's formula:

$$
\operatorname{Re}\left[e^{j \pi / 4}\right]=\operatorname{Re}[\cos \pi / 4+j \sin \pi / 4]=\operatorname{Re}\left[\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}}\right]=\frac{1}{\sqrt{2}}
$$

b) From the answer to (a), we have

$$
e^{j \pi / 3}=\cos (\pi / 3)+j \sin (\pi / 3)=\cos \left(60^{\circ}\right)+j \sin \left(60^{\circ}\right)=\frac{1}{2}+j \frac{\sqrt{3}}{2} .
$$

c) We first multiply the numbers in polar form.

$$
5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}=5(8) \angle 25^{\circ}+35^{\circ}=40 \angle 60^{\circ}=40 e^{j 60^{\circ}}
$$

Now we convert to rectangular form using Euler's formula.

$$
5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}=40 \cos \left(60^{\circ}\right)+j 40 \sin \left(60^{\circ}\right)=40 \cdot \frac{1}{2}+j 40 \frac{\sqrt{3}}{2}
$$

or

$$
5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}=20+j 20 \sqrt{3}
$$

d) We take the magnitude of each term of a product or quotient. We must keep sums as is, however.

$$
\left|\left(\frac{j^{-1}}{3+j 4}\right)\left(\frac{10 e^{-j 15^{\circ}}}{(1+j)^{2}}\right)\right|=\frac{\left|j^{-1}\right|}{|3+j 4|} \frac{|10|\left|e^{-j 15^{\circ}}\right|}{|1+j|^{2}}=\frac{1}{\sqrt{3^{2}+4^{2}}} \cdot \frac{10 \cdot 1}{\left(\sqrt{1^{2}+1^{2}}\right)^{2}}
$$

or

$$
\left|\left(\frac{j^{-1}}{3+j 4}\right)\left(\frac{10 e^{-j 15^{\circ}}}{(1+j)^{2}}\right)\right|=\frac{1}{5} \cdot \frac{10 \cdot 1}{(\sqrt{2})^{2}}=1
$$

e) We use the Pythagorean theorem to find the magnitude:

$$
A={\sqrt{2+\sqrt{3}^{3}}}^{2}+\sqrt{2-\sqrt{3}}^{2}=2+\sqrt{3}+2-\sqrt{3}=4
$$

The tangent of the angle is the imaginary part over the real part.

$$
\phi=\tan ^{-1} \frac{\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}=15^{\circ}
$$

Our answer:

$$
\sqrt{2+\sqrt{3}}-j \sqrt{2-\sqrt{3}}=4 \angle 15^{\circ}
$$

