Ex: \quad Given $\omega=10 \mathrm{krad} / \mathrm{s}$, for each of the following impedances, determine which of the following the impedance is from: a capacitor, an inductor, or a resistor. Also, find the value of that capacitor, inductor, or resistor. Recall that $z_{\mathrm{R}}=R, z_{\mathrm{L}}=j \omega L$, and $z_{\mathrm{C}}=1 / j \omega C$.
a) $j 40 \Omega$
b) $-j 1 \mathrm{k} \Omega$
c) $2 \mathrm{k} \Omega$
d) $j 8 \mathrm{k} \Omega$
e) $-j 100 \mathrm{k} \Omega$

Sol'n: a) A purely imaginary and positive value of impedance originates from an inductor, and the value of the impedance in the frequency-domain is proportional to the inductor in the time-domain.

$$
z_{L}=j \omega L
$$

or

$$
j 40 \Omega=j \omega L
$$

or

$$
L=\frac{j 40 \Omega}{j 10 \mathrm{k} \mathrm{r} / \mathrm{s}}=4 \mathrm{mH}
$$

b) A purely imaginary and negative value of impedance originates from a capacitance, and the value of the impedance in the frequency-domain is inversely proportional to the capacitance in the time-domain.

$$
z_{C}=\frac{1}{j \omega C}
$$

or

$$
-j 1 \mathrm{k} \Omega=\frac{1}{j 10 \mathrm{k} \mathrm{r} / \mathrm{s} \cdot C}
$$

$$
C=\frac{1}{(j 10 \mathrm{k} \mathrm{r} / \mathrm{s})(-j 1 \mathrm{k} \Omega)}=\frac{1}{10 \mathrm{M}} \mathrm{~F}=0.1 \mu \mathrm{~F}
$$

c) A real value of impedance originates from a resistance, and the value of the impedance in the frequency-domain is the same as the resistance in the time-domain.

$$
R=2 \mathrm{k} \Omega
$$

d) This impedance is 200 times as high as that in part (b). This requires an inductance that is 200 times larger.

$$
L=200(4 \mathrm{mH})=800 \mathrm{mH}=0.8 \mathrm{H}
$$

e) This impedance is 0.1 times as high as that in part (b). This requires a capacitance that is 10 times larger.

$$
C=1 \mu \mathrm{~F}
$$

