Ex: Derive a symbolic expression for the impedance of $j \omega L+R$ in parallel with $\frac{1}{s C}$ at frequency $\omega^{2}=\frac{1}{L C}$. Express the value in rectangular form, (i.e., $a+j b$ form).

Sol'n: When working with parallel impedances, it is typically easier to use the summation of conductance form of parallel impedance.

$$
z=\frac{1}{\frac{1}{R+j \omega L}+\frac{1}{\frac{1}{j \omega C}}}=\frac{1}{\frac{1}{R+j \omega L}+j \omega C}
$$

We clear the denominator of the denominator by multiplying top and bottom by $R+j \omega L$.

$$
z=\frac{R+j \omega L}{1+(R+j \omega L) j \omega C}=\frac{R+j \omega L}{1-\omega^{2} L C+j \omega R C}
$$

Substituting the value of ω^{2}, the denominator simplifies.

$$
z=\frac{R+j \frac{1}{\sqrt{L C}} L}{1-\frac{1}{L C} L C+j \frac{1}{\sqrt{L C}} R C}=\frac{R+j \sqrt{\frac{L}{C}}}{j R \sqrt{\frac{C}{L}}} \cdot \frac{-j}{-j}=\frac{\sqrt{\frac{L}{C}}-j R}{R \sqrt{\frac{C}{L}}}
$$

Now we divide the real and imaginary parts by the real denominator.

$$
z=\frac{L}{R C}-j \sqrt{\frac{L}{C}}
$$

