1. The circuit shown below is the small-signal model of an emitter follower incorporating an npn transistor (modeled by R_{b} and source βi_{b}). The input voltage in practice would be something like a music waveform. The capacitor couples the input to the input of the transistor, which is biased by R_{1} and R_{2} and a DC power supply that disappears in the small-signal model, (think superposition). The L represents a speaker coil (which has an impedance value that will look familiar to those who have worked with audio systems).

Note: $v_{\text {in }}(t)=300 \cos (800 t) \mathrm{mV}$
a) The value of R_{b} for the small-signal model is found by linearizing the current-versus-voltage curve for a diode in the npn transistor. The equation for the diode is as follows:

$$
i_{D}=I_{0}\left(e^{v_{D} / v_{T}}-1\right)
$$

where $I_{0}=0.010 \mathrm{pA}$ is the reverse saturation current of the diode

$$
\begin{aligned}
& v_{\mathrm{T}}=k T / q=26 \mathrm{mV} \text { at room temperature } \\
& v_{D}=\text { voltage across diode } \\
& i_{D}=\text { current in diode }
\end{aligned}
$$

The above values are deduced from a data sheet for a standard 1N914 diode (rather than an npn transistor). The URL for the diode data is http://www.mouser.com/ds/2/149/1N914-192459.pdf.

The formula for R_{b} is based on the slope of the nonlinear diode equation at an operating point of 0.7 V across the diode:

$$
R_{\mathrm{b}}=\left.\frac{1}{\frac{d i_{D}}{d v_{D}}}\right|_{v_{D}=0.70 \mathrm{~V}}
$$

Using the above formula, find the value of R_{b}.
b) Draw the frequency-domain circuit diagram (with numerical values for impedances and phasors [except the dependent source which is a multiple of the dependent variable]) for the circuit shown above.
2. a) Find the total impedance of the circuitry shown below if $\omega=1000 \mathrm{rad} / \mathrm{s}$.

b) Given $\omega=50 \mathrm{krad} / \mathrm{s}$, find z_{ab}.

3.

Given $\omega=7 \mathrm{k} \mathrm{rad} / \mathrm{s}$, Find the value of C that makes the total impedance of the above circuit real. You may round off the value of C to the nearest standard value.
4.

The above circuit is part of a simple crossover network for driving a midrange speaker having an impedance of 8Ω. The circuit is described at the following web site: http://www.termpro.com/articles/xover2.html. A more in-depth discussion of crossover networks may be found at http://sound.westhost.com/lr-passive.htm.
The web site describing the above bandpass filter suggests using cutoff frequencies of $f_{\mathrm{C} 1}=130 \mathrm{~Hz}$ and $f_{\mathrm{C} 2}=4 \mathrm{kHz}$. This results in the following values of L and C.

$$
L=330 \mu \mathrm{H} \quad C=150 \mu \mathrm{~F}
$$

Plot $\left|\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}\right|$ versus ω.
5.

The above circuit diagrams show an emitter-follower amplifier and its high-frequency equivalent circuit. Find $v_{b}(t)$.

Answers:
1.a) $R_{\mathrm{b}}=5.28 \Omega$
b) $z_{\mathrm{C}}=-j 12.5 \mathrm{k} \Omega, z_{\mathrm{L}}=j 8 \Omega, \mathbf{V}_{\text {in }}=300 \angle 0^{\circ} \mathrm{mV}$
2.a) $z_{\text {tot }}=10 \mathrm{k} \Omega$
b) $z_{\mathrm{ab}}=4 \sqrt{5} \angle-6^{\circ} \Omega$
3. $C=10 \mu \mathrm{~F}$
4.

5. $v_{b}(t) \approx 3 \cos \left(100 \mathrm{k} t+7^{\circ}\right) \mathrm{V}$

