Homework 17

E E 2240 F 13

1.

The circuit shown below is the small-signal model of an emitter follower incorporating an npn transistor (modeled by R_b and source βi_b). The input voltage in practice would be something like a music waveform. The capacitor couples the input to the input of the transistor, which is biased by R_1 and R_2 and a DC power supply that disappears in the small-signal model, (think superposition). The *L* represents a speaker coil (which has an impedance value that will look familiar to those who have worked with audio systems).

Note: $v_{in}(t) = 300 \cos(800t) \,\mathrm{mV}$

a) The value of R_b for the small-signal model is found by linearizing the currentversus-voltage curve for a diode in the npn transistor. The equation for the diode is as follows:

$$i_D = I_0 \left(e^{v_D/v_T} - 1 \right)$$

where $I_0 = 0.010$ pA is the reverse saturation current of the diode

 $v_{\rm T} = kT/q = 26 \text{ mV}$ at room temperature

 v_D = voltage across diode

 i_D = current in diode

The above values are deduced from a data sheet for a standard 1N914 diode (rather than an npn transistor). The URL for the diode data is http://www.mouser.com/ds/2/149/1N914-192459.pdf.

The formula for R_b is based on the slope of the nonlinear diode equation at an operating point of 0.7 V across the diode:

U

$$R_{\rm b} = \frac{1}{\frac{di_D}{dv_D}}\Big|_{v_D = 0.70\,\rm V}$$

Using the above formula, find the value of $R_{\rm b}$.

b) Draw the frequency-domain circuit diagram (with numerical values for impedances and phasors [except the dependent source which is a multiple of the dependent variable]) for the circuit shown above.

2.

a) Find the total impedance of the circuitry shown below if $\omega = 1000$ rad/s.

b) Given $\omega = 50$ k rad/s, find z_{ab} .

3.

Given $\omega = 7k$ rad/s, Find the value of *C* that makes the total impedance of the above circuit real. You may round off the value of *C* to the nearest standard value.

The above circuit is part of a simple crossover network for driving a midrange speaker having an impedance of $\$\Omega$. The circuit is described at the following web site: <u>http://www.termpro.com/articles/xover2.html</u>. A more in-depth discussion of crossover networks may be found at <u>http://sound.westhost.com/lr-passive.htm</u>.

The web site describing the above bandpass filter suggests using cutoff frequencies of $f_{C1} = 130$ Hz and $f_{C2} = 4$ kHz. This results in the following values of L and C.

 $L = 330 \,\mu\text{H}$ $C = 150 \,\mu\text{F}$

Plot $|V_0/V_i|$ versus ω .

The above circuit diagrams show an emitter-follower amplifier and its high-frequency equivalent circuit. Find $v_b(t)$.

Answers: 1.a) $R_b = 5.28 \ \Omega$ b) $z_C = -j12.5k \ \Omega$, $z_L = j8 \ \Omega$, $\mathbf{V}_{in} = 300 \angle 0^\circ \text{mV}$ 2.a) $z_{\text{tot}} = 10 \ \text{k}\Omega$ b) $z_{\text{ab}} = 4\sqrt{5} \angle -6^\circ \Omega$ 3. $C = 10 \ \mu\text{F}$

5. $v_b(t) \approx 3\cos(100kt + 7^\circ) V$