Ex: The circuit shown below is the small-signal model of an emitter follower incorporating an npn transistor (modeled by R_{b} and source βi_{b}). The input voltage in practice would be something like a music waveform. The capacitor couples the input to the input of the transistor, which is biased by R_{1} and R_{2} and a DC power supply that disappears in the small-signal model, (think superposition). The L represents a speaker coil (which has an impedance value that will look familiar to those who have worked with audio systems).

Note: $v_{\text {in }}(t)=300 \cos (800 t) \mathrm{mV}$
a) The value of R_{b} for the small-signal model is found by linearizing the current-versus-voltage curve for a diode in the npn transistor. The equation for the diode is as follows:

$$
i_{D}=I_{0}\left(e^{v_{D} / v_{T}}-1\right)
$$

where $I_{0}=0.010 \mathrm{pA}$ is the reverse saturation current of the diode

$$
v_{\mathrm{T}}=k T / q=26 \mathrm{mV} \text { at room temperature }
$$

$v_{D}=$ voltage across diode
$i_{D}=$ current in diode
The above values are deduced from a data sheet for a standard 1N914 diode (rather than an npn transistor). The URL for the diode data is http://www.mouser.com/ds/2/149/1N914-192459.pdf.
The formula for R_{b} is based on the slope of the nonlinear diode equation at an operating point of 0.7 V across the diode:

$$
R_{\mathrm{b}}=\left.\frac{1}{\frac{d i_{D}}{d v_{D}}}\right|_{v_{D}=0.70 \mathrm{~V}}
$$

Using the above formula, find the value of R_{b}.
b) Draw the frequency-domain circuit diagram (with numerical values for impedances and phasors [except the dependent source which is a multiple of the dependent variable]) for the circuit shown above.

Sol'n: a) The derivative is just the derivative of an exponential function, since the -1 is a constant with respect to v_{D}.

$$
\left.\frac{d i_{D}}{d v_{D}}\right|_{v_{D}=0.70 \mathrm{~V}}=\left.\frac{d I_{0}\left(e^{v_{D} / v_{T}}-1\right)}{d v_{D}}\right|_{v_{D}=0.70 \mathrm{~V}}
$$

The derivative must be found before plugging in numbers. Otherwise, we would be differentiating a number and would get zero. Our derivative is like finding $d / d x$ of $A e^{a x}$, which gives $a A e^{a x}$.

$$
\left.\frac{d i_{D}}{d v_{D}}\right|_{v_{D}=0.70 \mathrm{~V}}=\left.\frac{1}{v_{T}} I_{0} e^{v_{D} / v_{T}}\right|_{v_{D}=0.70 \mathrm{~V}}
$$

Now that the derivative has been found, we may plug in values:

$$
\left.\frac{d i_{D}}{d v_{D}}\right|_{v_{D}=0.70 \mathrm{~V}}=\frac{1}{26 \mathrm{mV}}(0.010 \mathrm{pA}) e^{0.70 \mathrm{~V} / 26 \mathrm{mV}} \approx 189.5 \mathrm{~m} \Omega^{-1}
$$

We now take the inverse, $(1 / x)$, to get the small-signal resistance value.

$$
R_{\mathrm{b}}=\left.\frac{1}{\frac{d i_{D}}{d v_{D}}}\right|_{v_{D}=0.70 \mathrm{~V}} \approx \frac{1}{189.5 \Omega^{-1}} \approx 5.28 \Omega
$$

b) In the frequency-domain, we use phasors for voltages and currents, and impedances for resistors, capacitors, and inductors.

The phasor transform is captured by the following equation:

$$
\mathrm{P}[A \cos (\omega t+\phi)]=A e^{j \phi} \equiv A \angle \phi
$$

We apply this equation to v_{s} and i_{s} using the same units in the frequencydomain as in the time-domain. The circuit diagram, below, shows the values.

The impedances are calculated with the following formulas:

$$
z_{R}=R \quad z_{L}=j \omega L \quad z_{C}=\frac{1}{j \omega C}=\frac{-j}{\omega C}
$$

The value of $\omega=800 \mathrm{r} / \mathrm{s}$ is found in $v_{\mathrm{in}}(t)$. Frequency domain circuit values are shown on the circuit diagram below. We may save some effort by noting that doubling the value of L increases the impedance by a factor of two, whereas doubling the value of C decreases the impedance by a factor of two.

