Ex:

Given $\omega=7 \mathrm{krad} / \mathrm{s}$, Find the value of C that makes the total impedance of the above circuit real. You may round off the value of C to the nearest standard value.

Sol'n: We compute the impedance of the inductor and consider the frequency domain circuit shown below.

$$
z_{\mathrm{L}}=j \omega L=j 7 \mathrm{kr} / \mathrm{s}(100 \mathrm{mH})=j 700 \Omega
$$

We compute the total impedance of the circuit and express it in $a+j b$ form so that we can set the imaginary part, i.e. b, to zero.

$$
z_{\mathrm{Tot}}=\frac{1}{j \omega C}+R \| j \omega L=-j \frac{1}{\omega C}+\frac{j \omega L R}{R+j \omega L}
$$

We rationalize the parallel impedance term to we can eliminate the imaginary part in its denominator.

$$
z_{\mathrm{Tot}}=-j \frac{1}{\omega C}+\frac{j \omega L R}{R+j \omega L} \frac{R-j \omega L}{R-j \omega L}=-j \frac{1}{\omega C}+\frac{-\omega^{2} L^{2} R+j \omega L R^{2}}{R^{2}+(\omega L)^{2}}
$$

or

$$
z_{\mathrm{Tot}}=-j \frac{1}{\omega C}+\frac{-\omega^{2} L^{2} R}{R^{2}+(\omega L)^{2}}+j \frac{j \omega L R^{2}}{R^{2}+(\omega L)^{2}}
$$

We extract the imaginary part and set it to zero.

$$
\operatorname{Im}\left[z_{\mathrm{Tot}}\right]=-\frac{1}{\omega C}+\frac{\omega L R^{2}}{R^{2}+(\omega L)^{2}}=0
$$

Now we solve for C.

$$
\frac{1}{\omega C}=\frac{\omega L R^{2}}{R^{2}+(\omega L)^{2}}
$$

Inverting both sides saves time.

$$
\omega C=\frac{R^{2}+(\omega L)^{2}}{\omega L R^{2}}
$$

or

$$
C=\frac{R^{2}+(\omega L)^{2}}{\omega^{2} L R^{2}}=\frac{100^{2}+700^{2}}{(7 \mathrm{k})^{2}(100 \mathrm{~m}) 100^{2}} \mathrm{~F}
$$

or, if we remove the factor of 100^{2} top and bottom

$$
C=\frac{1+49}{(7 \mathrm{k})^{2}(100 \mathrm{~m})} \mathrm{F} \approx \frac{49}{(7 \mathrm{k})^{2}(100 \mathrm{~m})} \mathrm{F}=\frac{1}{(1 \mathrm{k})^{2} 100 \mathrm{~m}} \mathrm{~F}
$$

or

$$
C \approx \frac{1}{100 \mathrm{k}} \mathrm{~F}=10 \mu \mathrm{~F}
$$

