Ex:

The above circuit is part of a simple crossover network for driving a midrange speaker having an impedance of 8Ω. The circuit is described at the following web site: http://www.termpro.com/articles/xover2.html. A more in-depth discussion of crossover networks may be found at http://sound.westhost.com/lr-passive.htm.

The web site describing the above bandpass filter suggests using cutoff frequencies of $f_{\mathrm{C} 1}=130 \mathrm{~Hz}$ and $f_{\mathrm{C} 2}=4 \mathrm{kHz}$. This results in the following values of L and C.

$$
L=330 \mu \mathrm{H} \quad C=150 \mu \mathrm{~F}
$$

Plot $\left|\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}\right|$ versus ω.

Sol'n: Though not required in this problem, we first consider how to find the values of L and C.

This is a standard band-pass filter. The cutoff frequencies for this filter are as follows:

$$
\omega_{C 1,2}= \pm \frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
$$

where $R=8 \Omega$.
The following observations simplify our calculations:

$$
\omega_{C 2}-\omega_{C 1}=\left(\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right)-\left(-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right)
$$

or

$$
\omega_{C 2}-\omega_{C 1}=\frac{R}{L}
$$

or

$$
L=\frac{R}{\omega_{C 2}-\omega_{C 1}}
$$

Also,

$$
\omega_{C 1} \omega_{C 2}=\left(-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right)\left(\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right)
$$

or

$$
\omega_{C 1} \omega_{C 2}=-\left(\frac{R}{2 L}\right)^{2}+\left(\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right)^{2}=\frac{1}{L C}=\omega_{\mathrm{o}}^{2}
$$

or

$$
C=\frac{1}{\omega_{C 1} \omega_{C 2} L}
$$

Now we compute the cutoff frequencies in r / s :

$$
\begin{aligned}
& \omega_{C 1}=2 \pi f_{C 1}=2 \pi(130) \mathrm{r} / \mathrm{s}=817 \mathrm{r} / \mathrm{s} \\
& \omega_{C 2}=2 \pi f_{C 2}=2 \pi(4 \mathrm{k}) \mathrm{r} / \mathrm{s}=25.1 \mathrm{kr} / \mathrm{s}
\end{aligned}
$$

Using our formulas from above yields the following:

$$
L=\frac{R}{\omega_{C 2}-\omega_{C 1}}=\frac{8}{25.1 \mathrm{k}-0.817 \mathrm{k}} \approx 330 \mu \mathrm{H}
$$

and

$$
C=\frac{1}{\omega_{C 1} \omega_{C 2} L}=\frac{1}{0.817 \mathrm{k} \cdot 25.1 \mathrm{k} \cdot 330 \mu} \mathrm{~F} \approx 150 \mu \mathrm{~F}
$$

Now for the solution of the problem. The circuit is a voltage divider:

$$
H(j \omega)=\frac{V_{\mathrm{o}}}{V_{\mathrm{i}}}=\frac{R}{R+j \omega L+1 / j \omega C}=\frac{1}{1+j \frac{1}{R}(\omega L-1 / \omega C)}
$$

We use the following Matlab code to plot the frequency response:

```
% ECE2260F07_HW3p3Matlab.m
%
% Plot of filter's frequency response curve
figure(1)
omega = 1:30e1:30e3;
s = j * omega;
FilterResp = 1./(1 + j * (1/8)*(omega*330e-6 - 1
./ (omega*150e-6)));
plot(omega,abs(FilterResp))
axis([0, max(omega), 0, 1])
xlabel('omega')
ylabel('|H|')
```


