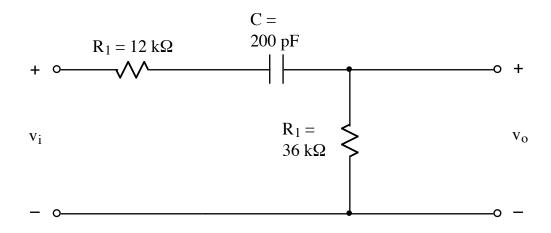
U

Ex:

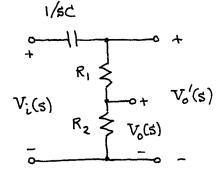


Note: vertical resistor should be labeled R₂.

- a) Determine the transfer function V_o/V_i . **Hint:** Reverse the order of R_1 and C, and suppose the output were tapped from the point between C and R_1 . Then use a voltage divider.
- b) Plot $|V_0/V_i|$ versus ω .
- c) Find the cutoff frequency, ω_c .

soln: q) We can switch the order of R, and C without changing $H(s) \equiv V_o(s)/V_i(s)$.

We then consider taking the output, v_o' , from between C and R₁.



We observe that
$$V_0(s) = V_0'(s) \cdot R_2$$
.

 $R_1 + R_2$

Thus,
$$H(s) \equiv \frac{V_0(s)}{V_i(s)} = H'(s) \cdot \frac{R_2}{R_1 + R_2}$$

where
$$H'(s) = \frac{V_o'(s)}{V_i(s)}$$
.

This is convenient since H'(s) is the transfer function of an RC filter, with $R = R_1 + R_2$.

$$H'(s) = \frac{V_o'(s)}{V_i(s)} = \frac{V_i(s) \cdot (R_1 + R_2)}{(R_1 + R_2) + 1/5C}$$

$$V_i(s)$$

$$= \frac{R_1 + R_2}{R_1 + R_2 + \frac{1}{50}}$$

$$= \frac{1}{1 + \frac{1}{\sharp (R_1 + R_2)} C}$$

$$= \frac{1}{1 - j - \frac{1}{\omega(R + R_{-})C}}$$

Thus,
$$H(s) = \frac{R_z}{R_1 + R_z} \cdot \frac{1}{1 - j \cdot \frac{1}{\omega(R_1 + R_z)C}}$$

b)
$$|H(s)| = \frac{R_2}{R_1 + R_2} \cdot \frac{1}{1 - j \cdot \frac{1}{\omega(R_1 + R_2)C}}$$

$$= \frac{R_2}{R_1 + R_2} \cdot \frac{1}{|1 - j \cdot \frac{1}{\omega(R_1 + R_2)C}|}$$

Since we can write $|a \cdot b| = |a|/|b|$

and $|a/b| = |a|/|b|$.

$$= \frac{R_2}{R_1 + R_2} \cdot \frac{1}{|a|^2 + \frac{1}{\omega^2(R_1 + R_2)^2C^2}}$$

We can sketch (H(s)) by finding a few key values.

For
$$\omega=0$$
 we have $|H|=\frac{R_2}{R_1+R_2}\cdot\frac{1}{\sqrt{1+\frac{1}{0}}}$

$$=\frac{R_2}{R_1+R_2}\cdot\frac{1}{\sqrt{1+\omega}}$$

$$=\frac{R_2}{R_1+R_2}\cdot\frac{1}{\omega}$$

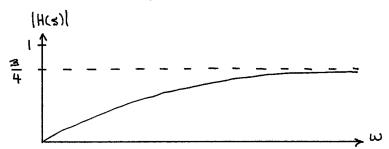
$$=0$$

For
$$\omega \to \infty$$
 we have $|H| = \frac{R_2}{R_1 + R_2} \cdot \frac{1}{\sqrt{1 + \frac{1}{\infty}}}$

$$= \frac{R_2}{R_1 + R_2} \frac{1}{\sqrt{1 + 0'}}$$

$$= \frac{R_2}{R_1 + R_2} \cdot 1$$

Here,
$$\frac{R_2}{R_1+R_2} = \frac{36 \, k\Omega}{12 \, k\Omega + 36 \, k\Omega} = \frac{3}{4}$$



c) The cutoff frequency, w_c , is the frequency where $|H(s)| = \frac{1}{\sqrt{2}} \max_{w} |H(s)| = \frac{1}{\sqrt{2}} \cdot \frac{3}{4}$.

We could solve the problem this way, but it is helpful to observe that we get the same w_c for H'(s) because the factor of $\frac{3}{4}$ in H(s) cancels out

the
$$\frac{3}{4}$$
 in $\frac{1}{12} \cdot \frac{3}{4}$.

For H'(s) we solve for w_c where $|H(s)| = \frac{1}{\sqrt{2}}$. $|H'(s)| = \frac{1}{|1-j-1|} = \frac{1}{\sqrt{2}}$ This is equivalent to

$$\left| 1 - j \frac{1}{\omega_c(R_1 + R_2)c} \right| = \sqrt{2}$$

Since $\sqrt{1+ja} = \sqrt{1^2+a^2} = \sqrt{1+a^2} = \sqrt{2}$ is solved by $a = \pm 1$, we must have

$$\frac{1}{\omega_{c}(R_{1}+R_{2})C}=\pm 1$$

we>0 always, so we use +1 on the right:

$$\omega_{c}(R_1+R_2)C=1$$

or

$$\omega_{c} = \frac{1}{(R_{1}+R_{2})C} = \frac{1}{(12k+36k)200p} r/s$$

$$= \frac{1}{48k \cdot 200p} r/s = \frac{1}{9600n} r/s$$

$$= \frac{1}{9.6 \mu} r/s = \frac{1 M}{9.6} r/s$$

W2 = 104 Kr/5