Ex:

a) The above is what type of filter? (circle one of the following)
band-pass band-reject
b) Find the center frequency, ω_{0}, of the above filter.
c) Find the maximum value of the gain, $|H(j \omega)|$, of the above filter.
d) Find the cutoff frequencies, $\omega_{\mathrm{C} 1}$ and $\omega_{\mathrm{C} 2}$, of the above filter.

Sol'n: a) At resonance, see ω_{o} below, the L and C act like a wire. This reduces the impedance connecting the input signal to the output. Thus, the gain will be higher at resonance, and this is a band-pass filter.
b) The center frequency occurs when the impedances of the L and C cancel out. This occurs at the resonant frequency.

$$
\omega_{\mathrm{o}}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{5 \mathrm{~m} \cdot 12.5 \mathrm{p}}} \mathrm{r} / \mathrm{s}=\frac{1}{\sqrt{62.5 \mathrm{mp}}} \mathrm{r} / \mathrm{s}
$$

or

$$
\omega_{\mathrm{o}}=\frac{1}{\sqrt{62500 \mu \mathrm{p}}} \mathrm{r} / \mathrm{s}=\frac{1}{250 \mathrm{~m} \mu} \mathrm{r} / \mathrm{s}=4 \mathrm{Mr} / \mathrm{s}
$$

c) The maximum gain occurs at the center frequency, when the L and C act like a wire. We may also convert v_{i}, R_{1}, and R_{2} to a Thevenin equivalent to simplify the calculation of the output voltage.

The transfer function is the ratio of the impedance across which \mathbf{V}_{0} is measured.

$$
|H(j \omega)|=\left|\frac{\mathbf{V}_{\mathrm{o}}}{\mathbf{V}_{\mathrm{i}}}\right|=\frac{4}{5} \frac{3 \mathrm{k} \Omega}{|24 \mathrm{k} \Omega+3 \mathrm{k} \Omega+3 \mathrm{k} \Omega|}=\frac{4}{50}=0.08
$$

d) We put resistors together and compute the transfer function for the output taken across all three resistors.

We can express the transfer function in terms of the transfer function of \mathbf{V}_{1} relative to \mathbf{V}_{i}.

$$
H(j \omega)=\frac{\mathbf{V}_{\mathrm{o}}}{\mathbf{V}_{\mathrm{i}}}=\frac{\mathbf{V}_{\mathrm{o}}}{\mathbf{V}_{1}} \frac{\mathbf{V}_{1}}{\mathbf{V}_{\mathrm{i}}}=\frac{R_{4}}{R_{\mathrm{Th}}+R_{3}+R_{4}} \frac{\mathbf{V}_{1}}{\mathbf{V}_{\mathrm{i}}}=\frac{1}{10} \frac{\mathbf{V}_{1}}{\mathbf{V}_{\mathrm{i}}}=\frac{1}{10} H_{1}(j \omega)
$$

The transfer function $H(j \omega)$ has the same cutoff frequencies as $H_{1}(j \omega)$, which is a standard RLC filter.

$$
\omega_{C 1, C 2}= \pm \frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
$$

where

$$
R=R_{\mathrm{Th}}+R_{3}+R_{4}
$$

or

$$
\omega_{C 1, C 2}= \pm \frac{30 \mathrm{k}}{2(5 \mathrm{~m})}+\sqrt{\left(\frac{30 \mathrm{k}}{2(5 \mathrm{~m})}\right)^{2}+\frac{1}{5 \mathrm{~m}(12.5 \mathrm{p})}}
$$

or

$$
\omega_{C 1, C 2}= \pm 3 \mathrm{M}+\sqrt{(3 \mathrm{M})^{2}+\frac{1}{62500 \mu \mathrm{p}}}
$$

or

$$
\omega_{C 1, C 2}= \pm 3 \mathrm{M}+\sqrt{(3 \mathrm{M})^{2}+\left(\frac{1}{250 \mathrm{~m} \mu}\right)^{2}} \mathrm{r} / \mathrm{s}
$$

or

$$
\omega_{C 1, C 2}= \pm 3 \mathrm{M}+\sqrt{(3 \mathrm{M})^{2}+(4 \mathrm{M})^{2}} \mathrm{r} / \mathrm{s}
$$

or

$$
\omega_{C 1, C 2}= \pm 3+5 \mathrm{Mr} / \mathrm{s}
$$

or

$$
\omega_{C 1}=2 \mathrm{Mr} / \mathrm{s} \text { and } \omega_{C 2}=8 \mathrm{Mr} / \mathrm{s}
$$

