Ex:

a) The above is what type of filter? (circle one of the following)

band-pass band-reject

- b) Find the center frequency, ω_0 , of the above filter.
- c) Find the maximum value of the gain, $|H(j\omega)|$, of the above filter.
- d) Find the cutoff frequencies, ω_{C1} and ω_{C2} , of the above filter.
- **SOL'N:** a) At resonance, see ω_0 below, the *L* and *C* act like a wire. This reduces the impedance connecting the input signal to the output. Thus, the gain will be higher at resonance, and this is a **band-pass** filter.
 - b) The center frequency occurs when the impedances of the L and C cancel out. This occurs at the resonant frequency.

$$\omega_{o} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{5m \cdot 12.5p}} r/s = \frac{1}{\sqrt{62.5mp}} r/s$$

or

$$\omega_{o} = \frac{1}{\sqrt{62500\mu p}} r/s = \frac{1}{250m\mu} r/s = 4 Mr/s$$

c) The maximum gain occurs at the center frequency, when the *L* and *C* act like a wire. We may also convert v_i , R_1 , and R_2 to a Thevenin equivalent to simplify the calculation of the output voltage.

The transfer function is the ratio of the impedance across which \mathbf{V}_{0} is measured.

$$|H(j\omega)| = \left|\frac{\mathbf{V}_{o}}{\mathbf{V}_{i}}\right| = \frac{4}{5} \frac{3k\Omega}{|24k\Omega + 3k\Omega + 3k\Omega|} = \frac{4}{50} = 0.08$$

d) We put resistors together and compute the transfer function for the output taken across all three resistors.

We can express the transfer function in terms of the transfer function of V_1 relative to V_i .

$$H(j\omega) = \frac{\mathbf{V}_{o}}{\mathbf{V}_{i}} = \frac{\mathbf{V}_{o}}{\mathbf{V}_{1}}\frac{\mathbf{V}_{1}}{\mathbf{V}_{i}} = \frac{R_{4}}{R_{\text{Th}} + R_{3} + R_{4}}\frac{\mathbf{V}_{1}}{\mathbf{V}_{i}} = \frac{1}{10}\frac{\mathbf{V}_{1}}{\mathbf{V}_{i}} = \frac{1}{10}H_{1}(j\omega)$$

The transfer function $H(j\omega)$ has the same cutoff frequencies as $H_1(j\omega)$, which is a standard RLC filter.

$$\omega_{C1,C2} = \pm \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

where

$$R = R_{\rm Th} + R_3 + R_4$$

or

$$\omega_{C1,C2} = \pm \frac{30k}{2(5m)} + \sqrt{\left(\frac{30k}{2(5m)}\right)^2 + \frac{1}{5m(12.5p)}}$$

or

$$\omega_{C1,C2} = \pm 3M + \sqrt{(3M)^2 + \frac{1}{62500\mu p}}$$

or

$$\omega_{C1,C2} = \pm 3M + \sqrt{(3M)^2 + (\frac{1}{250m\mu})^2} r/s$$

or

$$\omega_{C1,C2} = \pm 3M + \sqrt{(3M)^2 + (4M)^2} r/s$$

or

 $\omega_{C1,C2} = \pm 3 + 5$ Mr/s

or

 $\omega_{C1} = 2 \,\mathrm{Mr/s}$ and $\omega_{C2} = 8 \,\mathrm{Mr/s}$