Ex: \quad a) Solve the following simultaneous equations for i_{1} and i_{2} :

$$
2 i_{1}-9 i_{2}=26.5 \quad \frac{i_{1}+i_{2}}{5}+4 i_{1}=7.9
$$

b) Find exact positive values of ω satisfying the following equation given the following values: $R=30 \Omega, L=10 \mathrm{mH}$, and $C=25 \mu \mathrm{~F}$:

$$
\frac{1}{\sqrt{1+\frac{1}{R^{2}}\left(\omega L-\frac{1}{\omega C}\right)^{2}}}=\frac{1}{\sqrt{2}}
$$

Sol'n: a) We first decide which equation is simpler in terms of solving for one variable in terms of the other. In the present case, the first equation is simpler.

$$
2 i_{1}-9 i_{2}=26.5
$$

or

$$
2 i_{1}=26.5+9 i_{2} .
$$

or

$$
i_{1}=\frac{26.5+9 i_{2}}{2}=13.25+4.5 i_{2} .
$$

We could also have solved for i_{2}; either choice will work. In the present case, we substitute for i_{1} in the second equation. First, however, we collect the i_{1} terms in the second equation.

$$
i_{1}\left(\frac{1}{5}+4\right)+i_{2} \frac{1}{5}=7.9
$$

Now we substitute for i_{1} :

$$
\left(13.25+4.5 i_{2}\right)\left(\frac{1}{5}+4\right)+i_{2} \frac{1}{5}=7.9
$$

We collect i_{2} terms now so that we can solve for i_{2}.

$$
i_{2}\left[(4.5)\left(\frac{21}{5}\right)+\frac{1}{5}\right]+13.25\left(\frac{21}{5}\right)=7.9
$$

or, if we multiply both sides by 10 to clear fractions

$$
i_{2}[9(21)+2]+26.5(21)=79
$$

or

$$
i_{2}=\frac{79-26.5(21)}{9(21)+2}=-2.5
$$

Now that i_{2} is known, the equation derived earlier for i_{1} in terms of i_{2} yields the value of i_{1} :

$$
i_{1}=13.25-4.5(2.5)=2
$$

b) When doing algebra, any operation that affects both sides the same way without creating a divide by zero is allowed. Thus, inverting both sides is allowed and yields the following result:

$$
\sqrt{1+\frac{1}{R^{2}}\left(\omega L-\frac{1}{\omega C}\right)^{2}}=\sqrt{2}
$$

Squaring both sides eliminates the square roots:

$$
1+\frac{1}{R^{2}}\left(\omega L-\frac{1}{\omega C}\right)^{2}=2
$$

Subtracting unity from both sides yields an equation with perfect squares on both sides:

$$
\frac{1}{R^{2}}\left(\omega L-\frac{1}{\omega C}\right)^{2}=1
$$

Taking the square root of both sides yields a simpler problem, but both the positive and negative square roots must be taken into account:

$$
\sqrt{\frac{1}{R^{2}}\left(\omega L-\frac{1}{\omega C}\right)^{2}}=\sqrt{1}
$$

or, more precisely,

$$
\frac{1}{R}\left(\omega L-\frac{1}{\omega C}\right)= \pm 1
$$

This is a pair of quadratic equations, which becomes apparent after multiplying both sides by ω :

$$
\frac{1}{R}\left(\omega^{2} L-\frac{1}{C}\right)= \pm \omega
$$

The remaining steps are straightforward algebra:

$$
\left(\omega^{2} L-\frac{1}{C}\right)= \pm R \omega
$$

or

$$
\omega^{2} L \pm R \omega-\frac{1}{C}=0
$$

or, if the coefficient of the squared term is set to unity:

$$
\omega^{2} \pm \frac{R}{L} \omega-\frac{1}{L C}=0
$$

This is two quadratic equations, with four roots:

$$
\omega= \pm \frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
$$

Now the challenge is to determine which roots are positive. Examination of the radical (i.e., square root) term, however, reveals that, because R, L, and C are positive, its magnitude is always larger than $R / 2 L$, meaning it must added in order to obtain a positive value.

$$
\begin{aligned}
& \omega_{1}=-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}} \\
& \omega_{2}=+\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
\end{aligned}
$$

