Ex:

a) The above circuit operates in linear mode. Derive a symbolic expression for v_{O}. The expression must contain not more than the parameters $i_{s 1}, i_{s} 2, R_{1}$, and R_{2}.
b) Derive a symbolic expression for v_{O} in terms of common mode and differential input currents:

$$
i_{\mathrm{cm}} \equiv \frac{\left(i_{s 2}+i_{s 1}\right)}{2} \quad \text { and } \quad i_{\mathrm{dm}} \equiv i_{s 2}-i_{s 1}
$$

The expression must contain not more than the parameters $i_{\mathrm{cm}}, i_{\mathrm{dm}}, R_{1}$, and R_{2}. Write the expression as i_{cm} times a term plus i_{dm} times a term.
c) What condition must be satisfied in order for the above circuit to amplify only $i_{\text {dm }}$?

Sol'n: a) We first determine the voltage at the + input of the op-amp. No current flows into the op-amp, so $i_{\mathrm{s} 2}$ flows through R_{2} to produce v_{+}.

$$
v_{+}=i_{\mathrm{s} 2} R_{2}
$$

The negative feedback causes the voltage at the - input to be the same as the voltage at the + input.

$$
v_{-}=v_{+}=i_{\mathrm{s} 2} R_{2}
$$

We equate the current flowing toward the - input from the left and right sides. (No current flows into the - input.)

$$
i_{\mathrm{s} 1}=\frac{v_{-}-v_{\mathrm{o}}}{R_{1}}
$$

We solve the above equation for v_{0}.

$$
v_{\mathrm{o}}=v_{-}-i_{\mathrm{s} 1} R_{1}=i_{\mathrm{s} 2} R_{2}-i_{\mathrm{s} 1} R_{1}
$$

b) We write the current sources in terms of the common mode and differential mode currents.

$$
i_{s 1}=i_{\mathrm{cm}}-\frac{i_{\mathrm{dm}}}{2} \quad \text { and } \quad i_{s 2}=i_{\mathrm{cm}}+\frac{i_{\mathrm{dm}}}{2}
$$

We substitute these expressions into the expression for v_{0}.

$$
v_{\mathrm{o}}=\left(i_{\mathrm{cm}}+\frac{i_{\mathrm{dm}}}{2}\right) R_{2}-\left(i_{\mathrm{cm}}-\frac{i_{\mathrm{dm}}}{2}\right) R_{1}
$$

Rearranging terms yields the desired answer.

$$
v_{\mathrm{o}}=i_{\mathrm{cm}}\left(R_{2}-R_{1}\right)+\frac{i_{\mathrm{dm}}}{2}\left(R_{2}+R_{1}\right)
$$

c) The common-mode term is eliminated by setting R_{1} equal to R_{2}.

$$
R_{1}=R_{2}
$$

