Ex:

The voltage source in the above circuit is off $(0 \mathrm{~V})$ for $t<0$.
An engineer wishes to use the above circuit to create two decaying sinusoidal signals 120° out-of-phase to drive a three-phase motor for a short time. (A third signal that is 120° out-of-phase with the first two may be created by an additional op-amp circuit, not shown, that computes $-v_{0}-v_{1}$.) The signal at $v_{0}(t)$ will necessarily be a decaying sinusoid of the following form:

$$
v_{0}(t)=-v_{m} e^{-\alpha t} \sin (\beta t)
$$

where v_{m}, α, and β are positive real-valued constants.
The design problem now is to create a $v_{1}(t)$ signal that is 120° out-of-phase with $v_{0}(t)$.
a) Find a symbolic expression for the Laplace-transformed output, $\mathbf{V}_{1}(s)$, in terms of not more than $R_{1}, R_{2}, R_{3}, L, C$, and values of sources or constants.
b) Choose a numerical value for C to make

$$
v_{1}(t)=v_{m} e^{-\alpha t} \cos \left(\beta t-30^{\circ}\right) .
$$

Hint: $\cos (A-B)=\cos A \cos B+\sin A \sin B$
c) Why could the desired $v 1(\mathrm{t})$ not be obtained if the positions of the L and C were reversed?

SoL'n: a) The input voltage source is a step function that Laplace transforms to $1 / s$.

$$
\mathbf{V}_{\mathrm{i}}(s)=\frac{1}{s}
$$

Before time zero, the input voltage is zero and it follows that initial conditions for both the L and C are zero.

At the - input of the op-amp, we have the same voltage (because of the negative feedback) as at the + input, namely zero volts.

We can express the current flowing toward the - input as the input voltage divided by the sum of impedances up to the - input. This is true in the Laplace domain and is just an example of Ohm's law.

$$
\mathbf{I}(s)=\frac{1}{s} \frac{1}{s L+R+\frac{1}{s C}}=\frac{1 / L}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}
$$

where R represents $R_{1}+R_{2}$.
To find $\mathbf{V}_{1}(s)$, we observe that we may use the voltage drop across L and R_{2}. Again, we use Ohm's law, multiplying the impedances of L and R_{2} by I(s).

$$
\mathbf{V}_{1}(s)=\mathbf{I}(s)\left(s L+R_{2}\right)=\frac{s+\frac{R_{2}}{L}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}=\frac{s+\frac{R_{2}}{L}}{\left(s+\frac{R}{2 L}\right)^{2}+\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}}
$$

The second form for the answer will figure into our solution to (b).
b) Using the hint, we rewrite the expression for v_{1} in terms of sine and cosine.

$$
v_{1}(t)=v_{m} e^{-\alpha t}\left[\cos (\beta t) \cos \left(30^{\circ}\right)+\sin (\beta t) \sin \left(30^{\circ}\right)\right]
$$

or

$$
v_{1}(t)=v_{m} e^{-\alpha t}\left[\cos (\beta t) \frac{\sqrt{3}}{2}+\sin (\beta t) \frac{1}{2}\right]
$$

We Laplace transform the expression for $v_{1}(t)$.

$$
\mathbf{V}_{1}(s)=v_{m}\left[\frac{\sqrt{3}}{2} \frac{s+\alpha}{(s+\alpha)^{2}+\beta^{2}}+\frac{1}{2} \frac{\beta}{(s+\alpha)^{2}+\beta^{2}}\right]
$$

Matching the denominator to our answer from (a), we identify the values of α and β.

$$
\begin{aligned}
& \alpha=\frac{R}{2 L} \\
& \beta^{2}=\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}
\end{aligned}
$$

We can calculate the numerical value of α.

$$
\frac{R}{2 L}=\frac{4+8}{2(2 \mathrm{~m})} \mathrm{r} / \mathrm{s}=3 \mathrm{k}
$$

Now we turn our attention to the numerator of $\mathbf{V}_{1}(s)$.

$$
\mathbf{V}_{1}(s)=v_{m} \frac{1}{2}\left[\frac{\sqrt{3}(s+\alpha)+\beta}{(s+\alpha)^{2}+\beta^{2}}\right]=\left[\frac{v_{m} \frac{\sqrt{3}}{2} s+v_{m} \frac{\sqrt{3}}{2} \alpha+v_{m} \frac{1}{2} \beta}{(s+\alpha)^{2}+\beta^{2}}\right]
$$

From the solution to (a), the coefficient of s is unity, which dictates the necessary value of v_{m}.

$$
v_{m}=\frac{2}{\sqrt{3}}
$$

Now we consider the constant term of the numerator, which must map the solution from (a). Using our value of v_{m} and the solution to (a) gives the following equation.

$$
\alpha+\frac{1}{\sqrt{3}} \beta=\frac{R_{2}}{L}
$$

or

$$
\frac{R_{1}+R_{2}}{2 L}+\frac{1}{\sqrt{3}} \beta=\frac{R_{2}}{L}
$$

or, if we subtract $R_{2} / 2 L$ from both sides, we have the following equation:

$$
\frac{R_{1}}{2 L}+\frac{1}{\sqrt{3}} \beta=\frac{R_{2}}{2 L}
$$

A few calculations:

$$
\frac{R_{1}}{2 L}=\frac{4}{2(2 \mathrm{~m})} \mathrm{r} / \mathrm{s}=1 \mathrm{k} \quad \text { and } \quad \frac{R_{2}}{2 L}=\frac{8}{2(2 \mathrm{~m})} \mathrm{r} / \mathrm{s}=2 \mathrm{k}
$$

Using these values, we have an equation for β.

$$
1 \mathrm{k}+\frac{1}{\sqrt{3}} \beta=2 \mathrm{k}
$$

or

$$
\frac{1}{\sqrt{3}} \beta=1 \mathrm{k}
$$

or

$$
\frac{1}{3} \beta^{2}=1 \mathrm{M}
$$

or, using the expression for β from earlier, we have the following:

$$
\beta^{2}=\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}=3 \mathrm{M}
$$

or

$$
\frac{1}{L C}-(3 \mathrm{k})^{2}=3 \mathrm{M}
$$

or

$$
\frac{1}{2 \mathrm{~m} C}=12 \mathrm{M}
$$

Finally, we can solve for C.

$$
C=\frac{1}{2 \mathrm{ml2M}}=\frac{1}{24 \mathrm{k}} \approx 41.7 \mu \mathrm{~F}
$$

c) With the C on the right, $\mathrm{v} 1(\mathrm{t})$ would end up at 1 V as the C would charge. Thus, the signal could not be a decaying sinusoid. It would have a DC offset.

