Ex:

Use Kirchhoff's laws to find v_{1} and i_{2}.

SoL'n: The 120Ω resistor is in series with the 40 mA source and must carry 40 mA . If we follow the arrow from current source around the circuit to the 120Ω resistor, we find that it points in the same direction as the measurement arrow for i_{2}. Thus, we use the same sign for i_{2}.

From the lower voltage loop we find that $v_{1}=-9 \mathrm{~V}$. THis follows from a clockwise v-loop starting at the lower left:

$$
9 \mathrm{~V}+v_{1}=0 \Rightarrow v_{1}=-9 \mathrm{~V}
$$

Note that we can find these quantities using only Kirchhoff's laws. If we want to find i_{1} and ν_{2}, we can use Ohm's law.

