

2.



Find the value of total resistance between terminals **a** and **b**.



a) Use the current-divider formula to determine what the value of  $R_1$  must be.



b) Use the voltage-divider formula to calculate  $v_1$  and  $v_2$ . (Be careful about signs.)



- a) Calculate  $i_1$ ,  $i_2$ , and  $v_0$ .
- b) Find the power dissipated for every component, including the voltage source.





Calculate  $i_3$  and  $v_4$ .

5.



Find  $i_b$ ,  $v_3$ , and the power dissipated by the components in the box.

**ANS:** 1. 39  $\Omega$ l 2.a) 1 k $\Omega$  2.b)  $v_1 = 12$  V,  $v_2 = -30$  V 3.a)  $i_1 = 1$  A,  $i_2 = 2$  A,  $v_0 = 6$  V 4.  $i_3 = 7.5$  A,  $v_4 = -1$  kV 5.  $i_b = 0.42 \ \mu$ A,  $v_3 = 1.26$  V,  $p = 85.1 \ \mu$ W