1.

Find the value of total resistance between terminals \mathbf{a} and \mathbf{b}.
2.

a) Use the current-divider formula to determine what the value of R_{1} must be.

b) Use the voltage-divider formula to calculate v_{1} and v_{2}. (Be careful about signs.)
3.

a) Calculate i_{1}, i_{2}, and v_{0}.
b) Find the power dissipated for every component, including the voltage source.
4.

Calculate i_{3} and v_{4}.
5.

Find i_{b}, v_{3}, and the power dissipated by the components in the box.

ANS: $1.39 \Omega 1$
2.a) $1 \mathrm{k} \Omega$
2.b) $v_{1}=12 \mathrm{~V}, v_{2}=-30 \mathrm{~V}$
3.a) $i_{1}=1 \mathrm{~A}, i_{2}=2 \mathrm{~A}, v_{0}=6 \mathrm{~V}$
4. $i_{3}=7.5 \mathrm{~A}, v_{4}=-1 \mathrm{kV}$
5. $i_{\mathrm{b}}=0.42 \mu \mathrm{~A}, v_{3}=1.26 \mathrm{~V}, p=85.1 \mu \mathrm{~W}$

