Ex:

a) Calculate i_{1}, i_{2}, and v_{0}.
b) Find the power dissipated for every component, including the voltage source.

Sol'n: a) We first label voltage and current for each resistor.

Starting with the voltage loops, we have the following equations:
v -loop on left: $12 \mathrm{~V}-v_{1}=0 \mathrm{~V}$ or $v_{1}=12 \mathrm{~V}$
This equation says that a resistor across a v-source has that source voltage across it.
v-loop on right: $v_{1}-v_{3}-v_{0}-v_{2}=0 \mathrm{~V}$
This loop is in the clockwise direction.
Since we have equations for the two inner loops, the outside v-loop would be redundant.

Now we consider i-sums at nodes.

At the top center node, we discover that we lack a current for the 12 V source. If we define a current for the voltage source, we add another unknown and another equation. Consequently, this gets us no closer to solving for the currents and voltages. Thus, we avoid writing a currentsum equation for the top center node.

The same argument applies to the bottom center node. Thus, this problem requires no curent-sum equations.

The next step is to equate currents in series components. Here, the same current must flow in the $1 \Omega, 3 \Omega$, and 2Ω resistors:

$$
i_{3}=i_{\mathrm{o}}=i_{2}
$$

From this point forward, we i_{2} in place of i_{3} and i_{o}. Note: if we look for such series currents at the outset, then we may eliminate some currents immediately.

Last, we use Ohm's law.

$$
\begin{aligned}
& v_{1}=i_{1} \cdot 12 \Omega \text { or } i_{1}=\frac{12 \mathrm{~V}}{12 \Omega}=1 \mathrm{~A} \\
& v_{\mathrm{o}}=i_{2} \cdot 3 \Omega \\
& v_{2}=i_{2} \cdot 2 \Omega \\
& v_{3}=i_{2} \cdot 1 \Omega
\end{aligned}
$$

Note that we can solve for v_{1} and i_{1} separately. This will happen whenever we have different parts of the circuit that are connected in parallel directly across a v-source.

For the right side of the circuit, we can substitute the Ohm's law expressions into the voltage equation and solve for i_{2} :

$$
v_{1}-v_{3}-v_{\mathrm{o}}-v_{2}=0 \mathrm{~V}
$$

or

$$
12 \mathrm{~V}-i_{2} \cdot 1 \Omega-i_{2} \cdot 3 \Omega-i_{2} \cdot 2 \Omega=0 \mathrm{~V}
$$

$$
i_{2}(1 \Omega+3 \Omega+2 \Omega)=12 \mathrm{~V}
$$

or

$$
i_{2}=\frac{12 \mathrm{~V}}{1 \Omega+3 \Omega+2 \Omega}=\frac{12 \mathrm{~V}}{6 \Omega}=2 \mathrm{~A}
$$

For v_{o}, we use Ohm's law:

$$
v_{\mathrm{o}}=i_{2} \cdot 3 \Omega=2 \mathrm{~A} \cdot 3 \Omega=6 \mathrm{~V}
$$

b) Power $=i \cdot v$

For resistors, $p=i v=i^{2} R=\frac{v^{2}}{R}$

$$
\begin{aligned}
& p_{12 \Omega}=i_{1}^{2} \cdot 12 \Omega=(1 \mathrm{~A})^{2} \cdot 12 \Omega=12 \mathrm{~W} \\
& p_{1 \Omega}=i_{2}^{2} \cdot 1 \Omega=(2 \mathrm{~A})^{2} \cdot 1 \Omega=4 \mathrm{~W} \\
& p_{3 \Omega}=i_{2}^{2} \cdot 3 \Omega=(2 \mathrm{~A})^{2} \cdot 3 \Omega=12 \mathrm{~W} \\
& p_{2 \Omega}=i_{2}^{2} \cdot 2 \Omega=(2 \mathrm{~A})^{2} \cdot 2 \Omega=8 \mathrm{~W}
\end{aligned}
$$

Our total power for the resistors is 36 W .
For the 12 V source, we need the current. Now that we have solved the circuit, we can use Kirchhoff's laws to find the current. Using a current source for the top center node, we have the following equation:

$$
i_{12 \mathrm{~V}}+i_{1}+i_{2}=0 \mathrm{~A}
$$

So our power for the supply is

$$
p_{12 \mathrm{~V}}=-3 \mathrm{~A} \cdot 12 \mathrm{~V}=-36 \mathrm{~W} .
$$

Total power for the circuit is $-36 \mathrm{~W}+36 \mathrm{~W}=0 \mathrm{~W}$. Note: a negative power means a source is supplying power.

