Ex:

Calculate i_{3} and v_{4}.

Sol'n: a) The total current of 10 A flows through the parallel combination of the center resistors (that total 120Ω) and the 360Ω. Thus, this circuit has a current divider consisting of the 10 A source, 120Ω in the center and the 360Ω on the right. Current i_{3} is the same as the current throughout the center branch, as given by the current divider formula:

$$
i_{3}=10 \mathrm{~A} \cdot \frac{\frac{1}{120 \Omega}}{\frac{1}{120 \Omega}+\frac{1}{360 \Omega}}
$$

or, after multiplying top and bottom by 360Ω :

$$
i_{3}=10 \mathrm{~A} \cdot \frac{3}{3+1}=7.5 \mathrm{~A}
$$

To find v_{4}, we observe that the entire 10 A from the source flows through the 100Ω resistor on the bottom, but if we follow the arrow around the circuit, we find that it points in the opposite direction of the passive sign convention. This direction conflict introduces a minus sign in Ohm's law:

$$
v_{4}=-10 \mathrm{~A} \cdot 100 \Omega=-1 \mathrm{kV}
$$

