Ex:

The op-amp operates in the linear mode. Using an appropriate model of the op-amp, find the value of v_{0}.

Sol'n: The figure below shows the circuit with one possible way of labeling voltages and currents for resistors.

There are three inner voltage loops:

$$
\begin{array}{ll}
\text { left-side: } & 1.6 \mathrm{~V}-v_{1}-v_{2}-2.4 \mathrm{~V}=0 \mathrm{~V} \\
\text { middle: } & 2.4 \mathrm{~V}+v_{2}+0 \mathrm{~V}=0 \mathrm{~V} \\
\text { right-side: } & -0 \mathrm{~V}-v_{3}-v_{\mathrm{o}}=0 \mathrm{~V}
\end{array}
$$

We write a current summation for the node at the - input of the op-amp. Note that there is only one node where R_{1}, R_{2}, and R_{3} meet since these R 's are connected by wires. The nodes above and below v_{o} are not candidates for current summations because they are connected to each other by only a voltage source.

$$
i \text {-sum: } \quad i_{1}=i_{2}+i_{3}
$$

Ohm's law for the three resistors:

$$
\begin{aligned}
& v_{1}=i_{1} R_{1} \\
& v_{2}=i_{2} R_{2} \\
& v_{3}=i_{3} R_{3}
\end{aligned}
$$

We substitute for the voltages using the Ohm's law equations, and we eliminate i_{1} using the i-sum equation.

$$
\begin{array}{ll}
\text { left-side: } & 1.6 \mathrm{~V}-\left(i_{2}+i_{3}\right) R_{1}-i_{2} R_{2}-2.4 \mathrm{~V}=0 \mathrm{~V} \\
\text { middle: } & 2.4 \mathrm{~V}+i_{2} R_{2}+0 \mathrm{~V}=0 \mathrm{~V} \\
\text { right-side: } & -0 \mathrm{~V}-i_{3} R_{3}-v_{\mathrm{o}}=0 \mathrm{~V}
\end{array}
$$

The middle-loop equation gives the value of i_{2}.

$$
i_{2}=-\frac{2.4 \mathrm{~V}}{R_{2}}
$$

The middle-loop equation also says that the last two terms on the left side of the left-side equation sum to zero and may be dropped.

$$
\text { left-side: } \quad 1.6 \mathrm{~V}-\left(i_{2}+i_{3}\right) R_{1}=0 \mathrm{~V}
$$

Substituting for i_{2}, we have the following left-side equation:

$$
\text { left-side: } \quad 1.6 \mathrm{~V}-\left(-\frac{2.4 \mathrm{~V}}{R_{2}}+i_{3}\right) R_{1}=0 \mathrm{~V}
$$

Solving for i_{3} :

$$
\text { left-side: } \quad 1.6 \mathrm{~V}+\frac{2.4 \mathrm{~V}}{R_{2}} R_{1}-i_{3} R_{1}=0 \mathrm{~V}
$$

or

$$
\text { left-side: } \quad i_{3}=\frac{1.6 \mathrm{~V}+\frac{2.4 \mathrm{~V}}{R_{2}} R_{1}}{R_{1}}
$$

Substituting this into the right-side equation gives the desired expression for v_{0} :

$$
v_{\mathrm{o}}=-i_{3} R_{3}=-\left(1.6 \mathrm{~V}+2.4 \mathrm{~V} \frac{R_{1}}{R_{2}}\right) \frac{R_{3}}{R_{1}}
$$

or

$$
v_{\mathrm{o}}=-\left(1.6 \mathrm{~V}+2.4 \mathrm{~V} \frac{100 \mathrm{k} \Omega}{300 \mathrm{k} \Omega}\right) \frac{150 \mathrm{k} \Omega}{100 \mathrm{k} \Omega}=-3.6 \mathrm{~V}
$$

