Ex:

For the circuit shown, write three independent equations for the node voltages v_{1}, v_{2}, and v_{3}. The quantity i_{x} must not appear in the equations.

Sol'n: For the v_{1} node on the left:

$$
\frac{v_{1}+v_{\mathrm{s} 1}-v_{2}}{R_{1}+R_{3}}+\alpha \frac{v_{1}+v_{\mathrm{s} 1}-v_{2}}{R_{1}+R_{3}}+\frac{v_{1}-v_{3}}{R_{2}}=0 \mathrm{~A}
$$

Note that i_{x} is the same as the current in the top branch from v_{1} to v_{2}. We substitute this current for i_{x} in the middle term.

Nodes v_{2} and v_{3} form a super-node. The voltage equation for the nodes is

$$
v_{2}+v_{\mathrm{s} 2}=v_{3} .
$$

The current summation for the super-node is formed by all currents flowing out of the v_{2} and v_{3} nodes except those flowing in $v_{\mathrm{s} 2}$:

$$
\frac{v_{2}-v_{\mathrm{s} 1}-v_{1}}{R_{1}+R_{3}}+\alpha \frac{v_{2}-v_{\mathrm{s} 1}-v_{1}}{R_{1}+R_{3}}+\frac{v_{2}}{R_{4}}+\frac{v_{3}-v_{1}}{R_{2}}-i_{\mathrm{s}}=0 \mathrm{~A} .
$$

This completes the set of three equations.

