Ex:

Find the equivalent resistance of the dependent source in the above circuit.
Sol'n: A dependent source may converted to a resistance when we can express both the voltage across it and the current through it as the dependent variable, here i_{x}, times values, say k_{1} and k_{2}. Then we can use Ohm's law to find the value of the equivalent resistance, $R_{\text {eq }}$.

$$
R_{\mathrm{eq}}=\frac{v}{i}=\frac{k_{1} i_{\mathrm{x}}}{k_{2} i_{\mathrm{x}}}=\frac{k_{1}}{k_{2}}
$$

Here, we have that the voltage for the dependent source is αi_{x}, so our goal is to express the current through the voltage source as a constant times i_{x}. It is simple in the present case, since the current in the dependent source is i_{x}.

$$
R_{\mathrm{eq}}=\frac{v}{i}=\frac{\alpha i_{\mathrm{x}}}{i_{\mathrm{x}}}=\alpha
$$

