Ex:

Find the equivalent resistance of the dependent source in the above circuit.

SOL'N: A dependent source may converted to a resistance when we can express both the voltage across it and the current through it as the dependent variable, here i_x , times values, say k_1 and k_2 . Then we can use Ohm's law to find the value of the equivalent resistance, R_{eq} .

$$R_{\text{eq}} = \frac{v}{i} = \frac{k_1 i_{\text{X}}}{k_2 i_{\text{X}}} = \frac{k_1}{k_2}$$

Here, we have that the voltage for the dependent source is $\alpha i_{\rm x}$, so our goal is to express the current through the voltage source as a constant times $i_{\rm x}$. It is simple in the present case, since the current in the dependent source is $i_{\rm x}$.

$$R_{\rm eq} = \frac{v}{i} = \frac{\alpha i_{\rm x}}{i_{\rm x}} = \alpha$$