


1.

Using superposition, derive an expression for v_4 that contains no circuit quantities other than i_s , v_{s1} , v_{s2} , R_1 , R_2 , R_3 , and R_4 .

2.

Using superposition, derive an expression for v_1 that contains no circuit quantities other than i_s , v_s , R_1 , R_2 , R_3 , and α , where $\alpha > 0$.

3.

In (a) and (b), the voltage $v_{\rm C}(t)$ across a 30 nF capacitor is listed. Find the current, $i_{\rm C}(t)$, flowing in the capacitor in each case as a function of time:

a)
$$v_C(t) = 4 \operatorname{V} + \frac{5 \operatorname{Vs}}{1 \operatorname{s} + t}$$

4. In (a) and (b), the current $i_L(t)$ flowing into a 20 µH inductor is listed. Find the voltage, $v_L(t)$, across the inductor in each case as a function of time:

a)
$$i_L(t) = 5 \text{ mA}$$

b) $i_L(t) = 5e^{-t/20 \text{ ms}} \text{ mA}$

5.

a) The following equation describes the current, $i_{\rm C}$, through a capacitor as a function of time. Find an expression for the voltage, $v_{\rm C}(t)$, across the capacitor as a function of time. Assume that $v_{\rm C}(t=0) = 2$ V and $C = 1 \,\mu$ F.

$$i_C(t) = 5e^{-t/8\,\mathrm{ms}} \,\mathrm{mA}$$

b) Using your answer to (a), find the time, t, at which $v_{\rm C}$ is equal to 40 V.

Answers:

1.
$$v_4 = \frac{-i_8 R_2 R_4 - (v_{s1} + v_{s2}) R_4}{R_2 + R_4}$$
 2. $v_1 = \frac{v_8 R_1 - \alpha i_8 R_1 R_3}{R_1 + R_2}$
3.a) $i_C = 0$ A b) $i_C = -\frac{150}{(1 + t/s)^2}$ nA
4.a) $v_L = 0$ V b) $v_L = -5e^{-t/20}$ ms μ V
5.a) $v_C(t) = 1$ M/F $\int_0^t 5e^{-t/8}$ ms $dt + 2$ V (compute the integral) b) $t \approx 24$ ms