1.

Using superposition, derive an expression for v_{4} that contains no circuit quantities other than $i_{\mathrm{s}}, v_{\mathrm{s} 1}, v_{\mathrm{s} 2}, R_{1}, R_{2}, R_{3}$, and R_{4}.
2.

Using superposition, derive an expression for v_{1} that contains no circuit quantities other than $i_{\mathrm{s}}, v_{\mathrm{s}}, R_{1}, R_{2}, R_{3}$, and α, where $\alpha>0$.
3. In (a) and (b), the voltage $v_{\mathrm{C}}(t)$ across a 30 nF capacitor is listed. Find the current, $i_{\mathrm{C}}(t)$, flowing in the capacitor in each case as a function of time:

a) $v_{C}(t)=0 \mathrm{~V}$
b) $v_{C}(t)=4 \mathrm{~V}+\frac{5 \mathrm{Vs}}{1 \mathrm{~s}+t}$
4. In (a) and (b), the current $i_{\mathrm{L}}(t)$ flowing into a $20 \mu \mathrm{H}$ inductor is listed. Find the voltage, $v_{\mathrm{L}}(t)$, across the inductor in each case as a function of time:

a) $i_{L}(t)=5 \mathrm{~mA}$
b) $i_{L}(t)=5 e^{-t / 20 \mathrm{~ms}} \mathrm{~mA}$
5.
a) The following equation describes the current, i_{C}, through a capacitor as a function of time. Find an expression for the voltage, $v_{\mathrm{C}}(t)$, across the capacitor as a function of time. Assume that $v_{\mathrm{C}}(t=0)=2 \mathrm{~V}$ and $C=1 \mu \mathrm{~F}$.

$$
i_{C}(t)=5 e^{-t / 8 \mathrm{~ms}} \mathrm{~mA}
$$

b) Using your answer to (a), find the time, t, at which v_{C} is equal to 40 V .

Answers:

1. $v_{4}=\frac{-i_{\mathrm{s}} R_{2} R_{4}-\left(v_{\mathrm{s} 1}+v_{\mathrm{s} 2}\right) R_{4}}{R_{2}+R_{4}} \quad$ 2. $v_{1}=\frac{v_{\mathrm{s}} R_{1}-\alpha i_{\mathrm{s}} R_{1} R_{3}}{R_{1}+R_{2}}$
3.a) $i_{C}=0 \mathrm{~A} \quad$ b) $i_{\mathrm{C}}=-\frac{150}{(1+t / \mathrm{s})^{2}} \mathrm{nA}$
4.a) $v_{L}=0 \mathrm{~V}$
b) $v_{L}=-5 e^{-t / 20 \mathrm{~ms}} \mu \mathrm{~V}$
5.a) $v_{C}(t)=1 \mathrm{M} / \mathrm{F} \int_{0}^{t} 5 e^{-t / 8 \mathrm{~ms}} \mathrm{~mA} d t+2 \mathrm{~V}$ (compute the integral) b) $t \approx 24 \mathrm{~ms}$
