Ex: In (a) and (b), the voltage $v_{\mathrm{C}}(t)$ across a 30 nF capacitor is listed. Find the current, $i_{\mathrm{C}}(t)$, flowing in the capacitor in each case as a function of time:

a) $v_{C}(t)=0 \mathrm{~V}$
b) $v_{C}(t)=4 \mathrm{~V}+\frac{5 \mathrm{Vs}}{1 \mathrm{~s}+t}$

Sol' $\mathrm{N}: \quad$ We use the defining equation for a capacitor in each case:

$$
i_{C}=C \frac{d v_{C}}{d t}
$$

a)

$$
i_{C}=C \frac{d}{d t} 0 \mathrm{~V}=0 \mathrm{~A}
$$

b)

$$
i_{C}=C \frac{d}{d t}\left(4 \mathrm{~V}+\frac{5 \mathrm{Vs}}{1 \mathrm{~s}+t}\right)=30 \mathrm{nF} \cdot\left[-\frac{5}{(1 \mathrm{~s}+t)^{2}}\right] \mathrm{V} / \mathrm{s}=-\frac{150}{(1+t / \mathrm{s})^{2}} \mathrm{nA}
$$

