Ex: In (a) and (b), the current $i_{L}(t)$ flowing into a 20 µH inductor is listed. Find the voltage, $v_{L}(t)$, across the inductor in each case as a function of time:

a)
$$i_L(t) = 5 \text{ mA}$$

b) $i_L(t) = 5e^{-t/20 \text{ ms}} \text{ mA}$

SOL'N: a) The inductor voltage depends on the inductor current:

$$v_{\rm L} = L \frac{di_{\rm L}}{dt}$$
.

The derivative is zero for a constant current in the inductor. Thus, the voltage is zero.

$$v_{\rm L} = 20\,\mu \mathrm{H} \frac{d\,5\,\mathrm{mA}}{dt} = 0\,\mathrm{V}$$

b) Again, we used the derivative formula.

$$v_{\rm L} = 20\,\mu{\rm H} \cdot \frac{d5e^{-t/20\,{\rm ms}}\,{\rm mA}}{dt}$$

or

$$v_{\rm L} = 20\,\mu{\rm H} \cdot \frac{-1}{20\,{\rm ms}} \cdot 5e^{-t/20\,{\rm ms}}\,{\rm mA}$$

or

$$v_{\rm L} = -5e^{-t/20\,\rm ms}\,\mu\rm V$$