- U
- 1. Find the an expression for the voltage, $v_C(t)$, across the capacitor in the circuit below for t > 0 if $R = 5 \text{ k}\Omega$, $C = 2 \mu\text{F}$, and $v_C(t = 0) = 8 \text{ V}$ (with + sign of v measurement on top side of C). Note that the switch closes at time t = 0.

2.

- a) Write a differential equation for the above circuit in terms of variable $i_{\rm L}$. Hint: use a *v*-loop.
- b) Find an expression for the current, $i_{\rm L}(t)$, through the inductor in the circuit for t > 0 if $R = 5 \text{ k}\Omega$, $L = 2 \mu\text{H}$, and $i_{\rm L}(t = 0) = 8 \text{ A}$.
- 3. After being open for a long time, the switch closes at t = 0.

- a) Find an expression for $v_{\rm C}(t)$ for $t \ge 0$.
- b) Find the energy stored in the capacitor at time $t = 30 \,\mu s$.

In the circuit below, the switch closes at t = 0 s, $v_s = 2.3$ V, R = 10 k Ω , L = 2 nH, and $i_L(t = 0) = 5$ A (arising from additional circuitry not shown that is disconnected at time t = 0 s).

- a) Find an expression for $i_{\rm L}(t)$ for $t \ge 0$.
- b) Find the energy stored in the inductor at time $t = 30 \,\mu s$.

After being zero for a long time, the value of $i_g(t)$ changes to 15 mA at t = 0 (and remains at 15 mA as time increases to infinity).

a) Find an expression for $v_0(t)$ for t > 0.

b) Find the current, i_R , in *R* as a function of time.

Answers:

4.

5.

1.
$$v_C(t > 0) = 8 \operatorname{V} e^{-t/10 \operatorname{ms}}$$

2.a) $L \frac{di_L(t)}{dt} + ? = 0 \operatorname{V}$ b) $i_L(t > 0) = 8 \operatorname{A} e^{-t/0.4 \operatorname{ns}}$
3.a) $v_C(t) = 2.3 + 2.7 e^{\frac{-t}{20 \, \mu \mathrm{s}}} \operatorname{V}$ b) $w_C = 8.42 \operatorname{nJ}$
4.a) $i_L(t \ge 0) = 0.23 \operatorname{mA} + (5 \operatorname{A} - 0.23 \operatorname{mA}) \cdot e^{-t/0.2 \operatorname{ps}}$ b) Hint: $w_L = \frac{1}{2} L i_L^2$

5.a) Hint: the *C* looks like an open at time $t = 0^{-1}$. b) $i_R(t \ge 0) = 15 \text{ mA} - 15 \text{ mA} \cdot e^{-t/1 \mu s}$