Ex: \quad Find the an expression for the voltage, $v_{\mathrm{C}}(t)$, across the capacitor in the circuit below for $t>0$ if $R=5 \mathrm{k} \Omega, C=2 \mu \mathrm{~F}$, and $v_{\mathrm{C}}(t=0)=8 \mathrm{~V}$ (with $+\operatorname{sign}$ of v measurement on top side of C). Note that the switch closes at time $t=0$.

Sol'n: \quad The same current flows in both the C and R, and the voltages are the same except for a minus sign:

$$
i_{\mathrm{C}}=C \frac{d v_{\mathrm{C}}}{d t}=-\frac{v_{\mathrm{C}}}{R}
$$

The latter part is a differential equation. The capacitor voltage, v_{C}, that solves this equation is an exponential. The exponential has the same functional form as its derivative and can satisfy the differential equation at every moment in time.

$$
v_{\mathrm{C}}(t)=A e^{-t /(R C)}=A e^{-t /(5 \mathrm{k} \Omega)(2 \mu \mathrm{~F})}=A e^{-t / 10 \mathrm{~ms}}
$$

To satisfy the initial condition as given for $t=0$, the value of the constant A must be 8 V since the exponential has a value of unity: $e^{0}=1$.

$$
v_{\mathrm{C}}(t)=8 e^{-t / 10 \mathrm{~ms}} \mathrm{~V}
$$

