Ex:

a) Write a differential equation for the above circuit in terms of variable i_{L}. Hint: use a v-loop.
b) Find an expression for the current, $i_{\mathrm{L}}(t)$, through the inductor in the circuit for $t>0$ if $R=5 \mathrm{k} \Omega, L=2 \mu \mathrm{H}$, and $i_{\mathrm{L}}(t=0)=8 \mathrm{~A}$.

SoL'n: a) The same current flows in both the L and R , and the voltages are the same except for a minus sign ($+\operatorname{sign}$ on top for both v measurements):

$$
v_{L}=L \frac{d i_{L}}{d t}=-i_{L} R=-v_{R}
$$

The differential equation is the center portion of the equation:

$$
L \frac{d i_{L}}{d t}=-i_{L} R
$$

b) The form of solution is an exponential (or exponentials if the circuit has more than just one L or C) for linear circuits with only R 's, L 's, and C 's. (If there is an independent source in the circuit for all time greater than zero, then the solution is an exponential or exponentials plus a constant.)

$$
i_{\mathrm{L}}(t)=A e^{-t /(L / R)}
$$

The value of the constant, A, is chosen to match the initial voltage on L , since the exponential has a value of unity at $t=0$: $e^{0}=1$.

$$
i_{\mathrm{L}}(t)=8 e^{-t /(2 \mu \mathrm{H} / 5 \mathrm{k} \Omega)} \mathrm{A}
$$

or

$$
i_{\mathrm{L}}(t)=8 e^{-t / 0.4 \mathrm{~ns}} \mathrm{~A}
$$

