

30	Communication

- Work recorded in notebook (rather than pasted in)
- 4 8 4 4 4 Complete information: task descriptions, diagrams, data, reproducible one year later

- Written in Ink Student Signed every page Student Dated every page TA Signature for every lab session (-3 each session missed) 6

Lab 3

40 VII. **ANALYSIS AND DESIGN OF CIRCUIT**

A. Equations

- 8 Derivation of $V_0(s)$, including diagrams of circuit and comments
- 8 Derivation of $V_1(s)$, including diagrams of circuit and comments
 - B. Circuit Parameters
- 2 Formula for α in terms of R_1 , R_2 , R_3 , C_1 , C_2 , and L
- Formula for β in terms of R_1 , R_2 , R_3 , C_1 , C_2 , and L2
- 6 Formula for making $\psi = \pm 90^{\circ}$ in (2) in terms of R_1, R_2, R_3, C_1, C_2 , and L
- 2 Formula for making a = b in terms of R_1, R_2, R_3, C_1, C_2 , and L
- 2 Measured value of L and measured value of R_0 (resistance in L)
- Calculated values of R_1 , R_2 , R_3 , and C_1 (which is same as value for C_2) 4 Double Spiral C.
- Matlab® plot of expected spirals (and code in Appendix) 6

30 VIII. CONSTRUCTION AND TESTING OF SPIROGRAVITATOR CIRCUIT

A. Circuit Construction

- Commented on construction of circuit 1
 - *Display* $v_0(t)$ *and* $v_1(t)$ B.
- Commented on display of $v_0(t)$ and $v_1(t)$ (plotted versus *t*) 1
 - Display the Spirals C.
- 1 Commented on display of spirals
 - Measure $v_0(t)$ and $v_1(t)$ D.
- 3 Matlab® plot of measured $v_0(t)$ and $v_1(t)$
- Measured values (and explanation or how obtained) for α , β , ψ , a, b, and c18 *Comparison of* $v_0(t)$ *and* $v_1(t)$
- Matlab® plot of expected and measured spirals superimposed 6