Communication
4 Work recorded in notebook (rather than pasted in)
8 Complete information: task descriptions, diagrams, data, reproducible one year later
4 Written in Ink
4 Student Signed every page
4 Student Dated every page
6 TA Signature for every lab session (-3 each session missed)

Lab 3

40 VII. Analysis and Design of Circuit
A. Equations

8 Derivation of $V_{0}(s)$, including diagrams of circuit and comments
8 Derivation of $V_{1}(s)$, including diagrams of circuit and comments
B. Circuit Parameters

2 Formula for α in terms of $R_{1}, R_{2}, R_{3}, C_{1}, C_{2}$, and L
2 Formula for β in terms of $R_{1}, R_{2}, R_{3}, C_{1}, C_{2}$, and L
$6 \quad$ Formula for making $\psi= \pm 90^{\circ}$ in (2) in terms of $R_{1}, R_{2}, R_{3}, C_{1}, C_{2}$, and L
2 Formula for making $a=b$ in terms of $R_{1}, R_{2}, R_{3}, C_{1}, C_{2}$, and L
2 Measured value of L and measured value of R_{0} (resistance in L)
4 Calculated values of R_{1}, R_{2}, R_{3}, and C_{1} (which is same as value for C_{2})
C. Double Spiral

6 Matlab ${ }^{\circledR}$ plot of expected spirals (and code in Appendix)
30 VIII. Construction and Testing of Spirogravitator Circuit
A. Circuit Construction

1 Commented on construction of circuit
B. Display $v_{0}(t)$ and $v_{1}(t)$

1 Commented on display of $v_{0}(t)$ and $v_{1}(t)$ (plotted versus t)
C. Display the Spirals

1 Commented on display of spirals
D. Measure $v_{0}(t)$ and $v_{1}(t)$
$3 \quad$ Matlab ${ }^{\circledR}$ plot of measured $v_{0}(t)$ and $v_{1}(t)$
18 Measured values (and explanation or how obtained) for $\alpha, \beta, \psi, a, b$, and c
E. Comparison of $v_{0}(t)$ and $v_{1}(t)$
$6 \quad \operatorname{Matlab}{ }^{\circledR}$ plot of expected and measured spirals superimposed

