Ex: \quad Find the value of each of the following:

a) The above circuit operates in linear mode. Derive a symbolic expression for v_{0}. The expression must contain not more than the parameters $v_{\mathrm{s} 1}, v_{\mathrm{s} 2}, R_{1}, R_{2}, R_{3}$, R_{4}, and R_{5}.
b) If $v_{\mathrm{s} 1}=0 \mathrm{~V}$ and $v_{\mathrm{s} 2}=1 \mathrm{~V}$, find the value of R_{5} that will yield an output voltage of $v_{\mathrm{o}}=1 \mathrm{~V}$.
c) Derive a symbolic expression for v_{O} in terms of common mode and differential input voltages:

$$
v_{\mathrm{cm}} \equiv \frac{\left(v_{s 2}+v_{s 1}\right)}{2} \quad \text { and } \quad v_{\mathrm{dm}} \equiv v_{s 2}-v_{s 1}
$$

The expression must contain not more than the parameters $v_{\mathrm{cm}}, v_{\mathrm{dm}}, R_{1}, R_{2}, R_{3}$, R_{4}, and R_{5}. Write the expression as v_{cm} times a term plus v_{dm} times a term. Hint: start by writing $v_{\mathrm{S} 1}$ and $v_{\mathrm{s} 2}$ in terms of v_{cm} and v_{dm} :

$$
v_{s 1}=v_{\mathrm{cm}}-\frac{v_{\mathrm{dm}}}{2} \quad \text { and } \quad v_{s 2}=v_{\mathrm{cm}}+\frac{v_{\mathrm{dm}}}{2}
$$

d) Find the numerical value of the circuit's input resistance, $R_{\text {in }}$, as seen by source $v_{\mathrm{s} 2}$. In other words, write a formula for voltage, $v_{s 2}$, divided by i_{2} :

$$
R_{\mathrm{in}} \equiv \frac{v_{s 2}}{i_{2}}
$$

SoL'N: a) Converting the circuitry comprised of $v_{\mathrm{s} 1}, R_{1}$, and R_{2} into a Thevenin equivalent yields a standard differential amplifier.

Likewise, converting the circuitry comprising $v_{\mathrm{s} 2}, R_{3}$, and R_{4} into a Thevenin equivalent yields further simplification:

Since no current flows into the + input of the op-amp, $R_{\mathrm{Th} 2}$ has no voltage drop and may be removed.

Now, applying superposition reveals that this circuit is a combination of a standard negative-gain circuit and positive-gain circuit.
case I: $\left(v_{\mathrm{s} 1}\right.$ on, $v_{\mathrm{s} 2}$ off $=$ wire $)$

For this circuit, $v_{1-}=v_{1+}=0 \mathrm{~V}$. (The " 1 " stands for "case I".) Using v_{1-} to calculate $i_{\text {left1 }}$ and $i_{\text {right } 1}$ gives the following equation:

$$
i_{\text {left } 1}=\frac{v_{\mathrm{s} 1} \cdot \frac{R_{2}}{R_{1}+R_{2}}}{R_{1} \| R_{2}}=\frac{-v_{\mathrm{o} 1}}{R_{5}}=i_{\text {right } 1}
$$

or

$$
v_{\mathrm{o} 1}=-v_{\mathrm{s} 1} \frac{R_{5}}{R_{1}}
$$

case II: $\left(v_{\mathrm{s} 1}\right.$ off $=$ wire, $v_{\mathrm{s} 2}$ on $)$

For this circuit, $v_{2-}=v_{2+}=v_{\mathrm{s} 2} \frac{R_{4}}{R_{3}+R_{4}}$. (The "2" stands for "case II".)
Using v_{2-} to calculate $i_{\text {left } 2}$ and $i_{\text {right } 2}$ gives the following equation:

$$
i_{\text {left } 2}=\frac{v_{\mathrm{s} 2} \cdot \frac{R_{4}}{R_{3}+R_{4}}}{R_{1} \| R_{2}}=\frac{v_{\mathrm{s} 2} \cdot \frac{R_{4}}{R_{3}+R_{4}}-v_{\mathrm{o} 2}}{R_{5}}=i_{\mathrm{right} 2}
$$

or

$$
v_{\mathrm{o} 2}=v_{\mathrm{s} 2} \frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{5}}{R_{1} \| R_{2}}\right)
$$

Summing results gives the final result.

$$
v_{\mathrm{o}}=-v_{\mathrm{s} 1} \frac{R_{5}}{R_{1}}+v_{\mathrm{s} 2} \frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{5}}{R_{1} \| R_{2}}\right)
$$

Node voltage may also be used. For the v_{-}node:

$$
\frac{v_{+}}{R_{4}}+\frac{v_{+}-v_{\mathrm{s} 2}}{R_{3}}=0 \mathrm{~A}
$$

For the v_{+}node:

$$
\frac{v_{-}-v_{\mathrm{s} 1}}{R_{1}}+\frac{v_{-}}{R_{2}}+\frac{v_{-}-v_{\mathrm{o}}}{R_{5}}=0 \mathrm{~A}
$$

Setting $v_{-}=v_{+}=0 \mathrm{~V}$ and solving for v_{O} yields the answer obtained earlier.
b) The conditions match the superposition case II described in (a) but with $v_{\mathrm{s} 2}=1 \mathrm{~V}$.

$$
v_{\mathrm{o}}=1 \mathrm{~V}=v_{\mathrm{s} 2} \frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{5}}{R_{1} \| R_{2}}\right)=1 \mathrm{~V} \frac{3 \mathrm{k}}{2 \mathrm{k}+3 \mathrm{k}}\left(1+\frac{R_{5}}{2 \mathrm{k} \Omega \| 3 \mathrm{k} \Omega}\right)
$$

or

$$
1 \mathrm{~V}=1 \mathrm{~V} \frac{3}{5}\left(1+\frac{R_{5}}{1.2 \mathrm{k} \Omega}\right)
$$

or

$$
R_{5}=1.2 \mathrm{k} \Omega\left(\frac{5}{3}-1\right)=1.2 \mathrm{k} \Omega \cdot \frac{2}{3}=0.8 \mathrm{k} \Omega
$$

c) We make the suggested substitutions for $v_{\mathrm{s} 1}$ and $v_{\mathrm{s} 2}$:

$$
v_{\mathrm{o}}=-\left(v_{\mathrm{cm}}-\frac{v_{\mathrm{dm}}}{2}\right) \frac{R_{5}}{R_{1}}+\left(v_{\mathrm{cm}}+\frac{v_{\mathrm{dm}}}{2}\right) \frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{5}}{R_{1} \| R_{2}}\right)
$$

or

$$
\begin{aligned}
v_{\mathrm{o}}= & v_{\mathrm{cm}}\left[-\frac{R_{5}}{R_{1}}+\frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{5}}{R_{1} \| R_{2}}\right)\right] \\
& +\frac{v_{\mathrm{dm}}}{2}\left[\frac{R_{5}}{R_{1}}+\frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{5}}{R_{1} \| R_{2}}\right)\right]
\end{aligned}
$$

d)

$$
R_{\mathrm{in}}=\frac{v_{\mathrm{s} 2}}{\frac{v_{\mathrm{s} 2}}{R_{3}+R_{4}}}=R_{3}+R_{4}=2 \mathrm{k} \Omega+3 \mathrm{k} \Omega=5 \mathrm{k} \Omega
$$

