

- a) The above circuit operates in linear mode. Derive a symbolic expression for v_0 . The expression must contain not more than the parameters v_{s1} , v_{s2} , R_1 , R_2 , R_3 , R_4 , and R_5 .
- b) If $v_{s1} = 0$ V and $v_{s2} = 1$ V, find the value of R_5 that will yield an output voltage of $v_0 = 1$ V.
- c) Derive a symbolic expression for v_0 in terms of common mode and differential input voltages:

 $v_{\rm cm} \equiv \frac{(v_{s2} + v_{s1})}{2}$ and $v_{\rm dm} \equiv v_{s2} - v_{s1}$

The expression must contain not more than the parameters v_{cm} , v_{dm} , R_1 , R_2 , R_3 , R_4 , and R_5 . Write the expression as v_{cm} times a term plus v_{dm} times a term. Hint: start by writing v_{s1} and v_{s2} in terms of v_{cm} and v_{dm} :

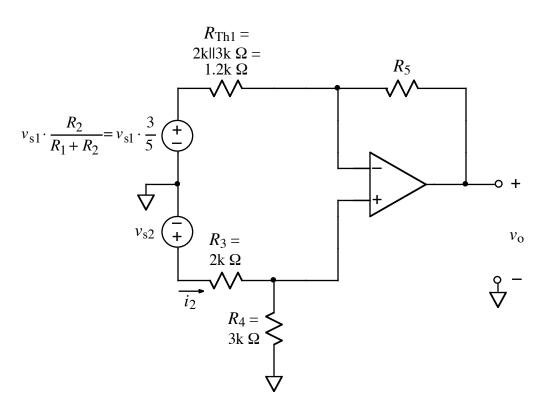
 $v_{s1} = v_{cm} - \frac{v_{dm}}{2}$ and $v_{s2} = v_{cm} + \frac{v_{dm}}{2}$

d) Find the numerical value of the circuit's input resistance, R_{in} , as seen by source v_{s2} . In other words, write a formula for voltage, v_{s2} , divided by i_2 :

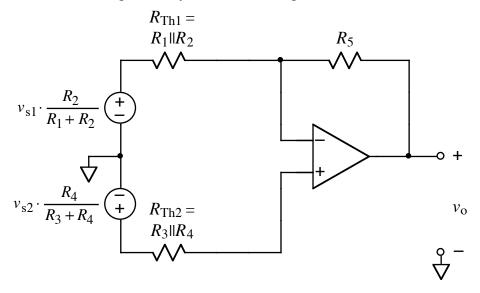
$$R_{\rm in} \equiv \frac{v_{s2}}{i_2}$$

SOL'N: a) Converting the circuitry comprised of v_{s1} , R_1 , and R_2 into a Thevenin equivalent yields a standard differential amplifier.

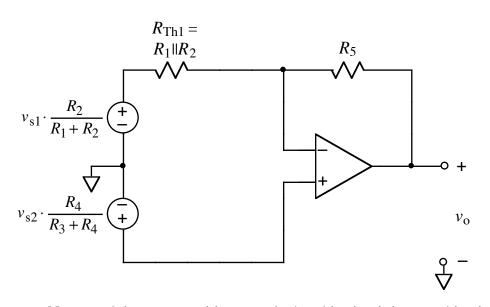
U



Likewise, converting the circuitry comprising v_{s2} , R_3 , and R_4 into a Thevenin equivalent yields further simplification:

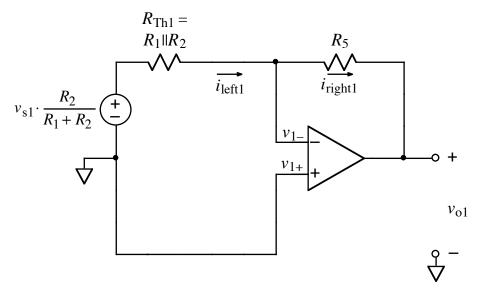


Since no current flows into the + input of the op-amp, R_{Th2} has no voltage drop and may be removed.



Now, applying superposition reveals that this circuit is a combination of a standard negative-gain circuit and positive-gain circuit.

case I: (v_{s1} on, v_{s2} off = wire)



For this circuit, $v_{1-} = v_{1+} = 0$ V. (The "1" stands for "case I".) Using v_{1-} to calculate $i_{\text{left}1}$ and $i_{\text{right}1}$ gives the following equation:

$$i_{\text{left1}} = \frac{v_{\text{s1}} \cdot \frac{R_2}{R_1 + R_2}}{R_1 \parallel R_2} = \frac{-v_{\text{o1}}}{R_5} = i_{\text{right1}}$$

or

$$v_{01} = -v_{s1} \frac{R_5}{R_1}$$

case II: $(v_{s1} \text{ off} = \text{wire}, v_{s2} \text{ on})$ $R_{\text{Th1}} =$ $R_1 || R_2$ R_5 i_{left2} *i*_{right2} + О v_{2+} v_{s2} . v_{o2} $R_3 + R_4$

For this circuit, $v_{2-} = v_{2+} = v_{s2} \frac{R_4}{R_3 + R_4}$. (The "2" stands for "case II".)

1

Using v_{2-} to calculate i_{left_2} and i_{right_2} gives the following equation:

$$i_{\text{left2}} = \frac{v_{\text{s2}} \cdot \frac{R_4}{R_3 + R_4}}{R_1 \parallel R_2} = \frac{v_{\text{s2}} \cdot \frac{R_4}{R_3 + R_4} - v_{\text{o2}}}{R_5} = i_{\text{right2}}$$

or

$$v_{o2} = v_{s2} \frac{R_4}{R_3 + R_4} \left(1 + \frac{R_5}{R_1 \parallel R_2} \right)$$

Summing results gives the final result.

$$v_{0} = -v_{s1}\frac{R_{5}}{R_{1}} + v_{s2}\frac{R_{4}}{R_{3} + R_{4}}\left(1 + \frac{R_{5}}{R_{1} \parallel R_{2}}\right)$$

Node voltage may also be used. For the v_{-} node:

$$\frac{v_+}{R_4} + \frac{v_+ - v_{s2}}{R_3} = 0 \,\mathrm{A}$$

For the v_+ node:

$$\frac{v_- - v_{s1}}{R_1} + \frac{v_-}{R_2} + \frac{v_- - v_0}{R_5} = 0 A$$

Setting $v_{-} = v_{+} = 0$ V and solving for v_{0} yields the answer obtained earlier.

b) The conditions match the superposition case II described in (a) but with $v_{s2} = 1$ V.

$$v_{0} = 1 \text{V} = v_{s2} \frac{R_{4}}{R_{3} + R_{4}} \left(1 + \frac{R_{5}}{R_{1} \parallel R_{2}} \right) = 1 \text{V} \frac{3k}{2k + 3k} \left(1 + \frac{R_{5}}{2k\Omega \parallel 3k\Omega} \right)$$

or

$$1\mathbf{V} = 1\mathbf{V}\frac{3}{5}\left(1 + \frac{R_5}{1.2\mathbf{k}\,\Omega}\right)$$

or

$$R_5 = 1.2k\Omega\left(\frac{5}{3} - 1\right) = 1.2k\Omega \cdot \frac{2}{3} = 0.8k\Omega$$

c) We make the suggested substitutions for v_{s1} and v_{s2} :

$$v_{\rm o} = -\left(v_{\rm cm} - \frac{v_{\rm dm}}{2}\right) \frac{R_5}{R_1} + \left(v_{\rm cm} + \frac{v_{\rm dm}}{2}\right) \frac{R_4}{R_3 + R_4} \left(1 + \frac{R_5}{R_1 \parallel R_2}\right)$$

or

$$v_{o} = v_{cm} \left[-\frac{R_{5}}{R_{1}} + \frac{R_{4}}{R_{3} + R_{4}} \left(1 + \frac{R_{5}}{R_{1} \parallel R_{2}} \right) \right] + \frac{v_{dm}}{2} \left[\frac{R_{5}}{R_{1}} + \frac{R_{4}}{R_{3} + R_{4}} \left(1 + \frac{R_{5}}{R_{1} \parallel R_{2}} \right) \right]$$

d)

$$R_{\rm in} = \frac{v_{\rm s2}}{\frac{v_{\rm s2}}{R_3 + R_4}} = R_3 + R_4 = 2k\,\Omega + 3k\,\Omega = 5k\,\Omega$$