2. (30 points)

Derive an expression for i_{3}. The expression must not contain more than the circuit parameters $\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}, \mathrm{i}_{\mathrm{a}}, \mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3}.

ans: $\quad i_{3}=\frac{V_{a} R_{2}+V_{b}\left(R_{1}+R_{2}\right)-i_{a} R_{1} R_{2}}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)}$
sol'n: Using passive sign convention, label voltage drop and current measurement polarities.

Use Kirchhoff's laws:

> sum v drops around loop $=0$
> sum i out of node $=0$
v drops for loop on left, using Ohm's law for v_{1} and v_{2} :

$$
V_{a}-i_{1} R_{1}-i_{2} R_{2}=0 V
$$

Middle loop would include current source, so use slightly larger loop with R_{2} on left and V_{b} on right:

$$
\mathrm{i}_{2} \mathrm{R}_{2}-\mathrm{i}_{3} \mathrm{R}_{3}+\mathrm{V}_{\mathrm{b}}=0 \mathrm{~V}
$$

Now sum currents out of top node (that consists of the two top nodes connected by a wire). Note: We are always allowed to combine nodes connected by wires.

$$
-\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{\mathrm{a}}+\mathrm{i}_{3}=0 \mathrm{~A}
$$

We now have three equations in three unknowns. We solve for i_{3}. Use the second equation to eliminate i_{2} :

$$
\mathrm{i}_{2}=\frac{\mathrm{i}_{3} \mathrm{R}_{3}-\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{2}}
$$

Use the first equation to eliminate i_{1} :

$$
\mathrm{i}_{1}=\frac{\mathrm{V}_{\mathrm{a}}-\mathrm{i}_{2} \mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{1}{\mathrm{R}_{1}}\left[\mathrm{~V}_{\mathrm{a}}-\left(\frac{\mathrm{i}_{3} \mathrm{R}_{3}-\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{2}}\right) \mathbb{R}_{2}\right]=\frac{1}{\mathrm{R}_{1}}\left(\mathrm{~V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}-\mathrm{i}_{3} \mathrm{R}_{3}\right)
$$

Substitute for i_{1} and i_{2} in the third equation:

$$
-\frac{1}{\mathrm{R}_{1}}\left(\mathrm{~V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}-\mathrm{i}_{3} \mathrm{R}_{3}\right)+\frac{\mathrm{i}_{3} \mathrm{R}_{3}-\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{2}}+\mathrm{i}_{\mathrm{a}}+\mathrm{i}_{3}=0 \mathrm{~A}
$$

Solve for i3:

$$
\begin{gathered}
-\frac{1}{\mathrm{R}_{1}}\left(\mathrm{~V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}\right)-\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{2}}+\mathrm{i}_{\mathrm{a}}+\frac{1}{\mathrm{R}_{1}} \mathrm{i}_{3} \mathrm{R}_{3}+\frac{\mathrm{i}_{3} \mathrm{R}_{3}}{\mathrm{R}_{2}}+\mathrm{i}_{3}=0 \mathrm{~A} \\
\mathrm{i}_{3}\left(\frac{\mathrm{R}_{3}}{\mathrm{R}_{1}}+\frac{\mathrm{R}_{3}}{\mathrm{R}_{2}}+1\right)=\frac{1}{\mathrm{R}_{1}}\left(\mathrm{~V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}\right)+\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{2}}-\mathrm{i}_{\mathrm{a}}
\end{gathered}
$$

Multiply both sides by $\mathrm{R}_{1} \mathrm{R}_{2}$ to clear fractions:

$$
i_{3}\left(R_{3} R_{2}+R_{3} R_{1}+R_{1} R_{2}\right)=R_{2}\left(V_{a}+V_{b}\right)+R_{1} V_{b}-i_{a} R_{1} R_{2}
$$

or

$$
i_{3}=\frac{V_{\mathrm{a}} R_{2}+V_{b}\left(R_{1}+R_{2}\right)-i_{\mathrm{a}} R_{1} R_{2}}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)}
$$

Now for consistency checks to verify our answer. (Optional)

1) Consider $i_{a}=0, V_{b}=0$, and $R_{3}=0$:

Since R_{2} is bypassed by a short, no current flows in R_{2}. Therefore, we can remove R_{2} without changing i_{3} :

$\mathrm{i}_{3}=\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{R}_{1}}$ by Ohm's law

Our formula gives $i_{3}=\frac{V_{a}}{R_{1}}$.
2) Consider $\mathrm{i}_{\mathrm{a}}=0$ (open circuit) and $\mathrm{R}_{2}=\infty$ (open circuit):

Removing R_{2} and i_{a} leaves total voltage $V_{a}+V_{b}$ across $R_{1}+R_{3}$ in outside loop.
Therefore, we have

$$
\mathrm{i}_{3}=\frac{\left(\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}\right)}{\left(\mathrm{R}_{1}+\mathrm{R}_{3}\right)}
$$

For our formula, we use the following identities:
$\lim _{\mathrm{R}_{2} \rightarrow \infty} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{3}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}=\frac{1}{\mathrm{R}_{1}+\mathrm{R}_{3}} \quad \lim _{\mathrm{R}_{2} \rightarrow \infty} \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{3}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}=\frac{1}{\mathrm{R}_{1}+\mathrm{R}_{3}}$
Making these substitutions in our formula gives

$$
\mathrm{i}_{3}=\frac{\left(\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}\right)}{\left(\mathrm{R}_{1}+\mathrm{R}_{3}\right)}
$$

(3) Consider $\mathrm{V}_{\mathrm{a}}=0, \mathrm{i}_{\mathrm{a}}=0$:

$$
\mathrm{i}_{3}=\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{1} \| \mathrm{R}_{2}+\mathrm{R}_{3}}
$$

Our formula gives $i_{3}=\frac{V_{b}\left(R_{1}+R_{2}\right)}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)}$ or $i_{3}=\frac{V_{b}}{R_{1} \| R_{2}+R_{3}}$.
(4) Consider $\mathrm{V}_{\mathrm{a}}=0, \mathrm{~V}_{\mathrm{b}}=0$:

By current divider formula, we have $i_{3}=-\frac{i_{a} R_{1} \| R_{2}}{R_{1} \| R_{2}+R_{3}}$.
Our formula gives $i_{3}=-\frac{i_{a} R_{1} R_{2}}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)}$ or $i_{3}=-\frac{i_{a} R_{1} \| R_{2}}{R_{1} \| R_{2}+R_{3}}$
(5) Consider $\mathrm{i}_{\mathrm{a}}=0, \mathrm{~V}_{\mathrm{b}}=0$.

v-divider gives v across $R_{2} \| R_{3}$

$$
v_{3}=V_{a} \frac{R_{2} \| R_{3}}{R_{2} \| R_{3}+R_{1}}
$$

Now

$$
\mathrm{i}_{3}=\frac{\mathrm{V}_{3}}{\mathrm{R}_{3}}=\frac{\mathrm{V}_{\mathrm{a}} \mathrm{R}_{2} \| \mathrm{R}_{3}}{\mathrm{R}_{3}\left(\mathrm{R}_{1}+\mathrm{R}_{2} \| \mathrm{R}_{3}\right)}=\frac{\mathrm{V}_{\mathrm{a}} \frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\mathrm{R}_{2}+\mathrm{R}_{3}}}{\mathrm{R}_{3}\left(\mathrm{R}_{1} \frac{\mathrm{R}_{2}+\mathrm{R}_{3}}{\mathrm{R}_{2}+\mathrm{R}_{3}}+\frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\mathrm{R}_{2}+\mathrm{R}_{3}}\right)}=\frac{\mathrm{V}_{\mathrm{a}} \mathrm{R}_{2}}{\mathrm{R}_{1}\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right)+\mathrm{R}_{2} \mathrm{R}_{3}}
$$

Our formula gives $i_{3}=\frac{V_{a} R_{2}}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)}$.

